电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

《勾股定理》课件VIP免费

《勾股定理》课件_第1页
1/26
《勾股定理》课件_第2页
2/26
《勾股定理》课件_第3页
3/26
读一读我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的.图1-2是在北京召开的2002年国际数学家大会(TCM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.图1-1图1-2hdzh在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”即:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。故称之为“勾股定理”或“商高定理”勾股定理勾股弦在西方,希腊数学家欧几里德(Euclid,公元前三百年左右)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理”,以后就流传开了。毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。相传,毕达哥拉斯学派找到了勾股定理的证明后,欣喜若狂,杀了一百头牛祭神,由此,又有“百牛定理”之称。教学目标※探索直角三角形三边关系,掌握勾股定理的运用思想,发展几何思维。※经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。※培养严谨的数学学习的态度,体会勾股定理的应用价值。毕达哥拉斯(公元前572----前492年),古希腊著名的哲学家、数学家、天文学家。相传在2500年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系,我们一起来观察图中的地面,看看能发现什么。A、B、C的面积有什么关系?直角三角形三边有什么关系?ABCABC图1—1(1)观察图1—1:正方形A中含有个小方格,即A的面积是个单位面积;正方形B中含有个小方格,即B的面积是个单位面积;正方形C中含有个小方格,即C的面积是个单位面积;99991818A的面积+B的面积=C的面积图1—2ABC(2)观察图1—2:正方形A中含有个小方格,即A的面积是个单位面积;正方形B中含有个小方格,即B的面积是个单位面积;正方形C中含有个小方格,即C的面积是个单位面积;444488A的面积+B的面积=C的面积因此可知等腰直角三角形有这样的性质:对于任意直角三角形都有这样的性质吗?两直边的平方和等于斜边的平方看下图ABCA的面积(单位长度)B的面积(单位长度)C的面积(单位长度)图1图2A、B、C面积关系直角三角形三边关系图1图2491392534sA+sB=sC两直角边的平方和等于斜边的平方ABCabcc2=a2+b2如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2勾股定理结论变形815A49B251.求下列图中字母所代表的正方形的面积:y=0学以致用,做一做S1S2S3S4S5S6S7ÒÑÖªS1=1,S2=3,S3=2,S4=4,ÇóS5¡¢S6¡¢S7µÄÖµ结论:S1+S2+S3+S4=S5+S6=S7y=0学海无涯EDCBA如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形E的边长为7cm,求正方形A,B,C,D的面积的和思考思考S1S2解:∵SE=49S1=SA+SBS2=SC+SD∴SA+SB+SC+SD=S1+S2=SE=4911美丽的勾股树y=02.求出下列直角三角形中未知边的长度68x5x13学以致用,做一做解:(1)在RtABC△中,由勾股定理得:AB2=AC2+BC2X2=36+64x2=100x2=62+82∴x=10∵x>0x2+52=132x2=132-52x2=144∴x=12(2)在RtABC△中,由勾股定理:AB2+AC2=BC2∵x>0ACBACB生活中的数学问题一个门框的尺寸如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?DCAB2m1my=0探究1DCAB2m1my=0分析连结AC,在Rt△ABC中,根据勾股定理:因此,因为AC大于木板的宽,所以木板能从门框内通过。52122222BCABAC.236.25AC1.在△ABC中,∠C=90°,a=6,b=8,则c=____2.在△ABC中,a=6,b=8,试求第三边c的值10y=0练一练3.在一个直角三角形中,两边长分别为6、8,则第三边的长为________10y=0练一练或27⒈勾股定理是几何中最重要的定理之一,它揭示了直角三角形三边之间的数量关系.⒉勾股定理:直角三角形两直角边a、b平方和,等于斜边c平方。a2+b2=c2⒊勾股定理的主要作用是在直角三角形中,已知任意两边求第三边的长。六、板书设计电脑屏幕勾股定理1、勾股定理:……2、学生展示:3、学生板演作业:P69---701、2、3。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

《勾股定理》课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部