x二项式定理1.【来源】浙江省2017届高三“超级全能生”3月联考数学试题在二项式(2x1)6的展开式中,常数项是(C)xA.-240B.240C.-160D.160答案及解析:2.【来源】安徽省黄山市2019届高三第一次质量检测(一模)数学(理)试题在(1+x)6(1-2x)展开式中,含x5的项的系数是(D)A.36B.24C.-36D.-243.【来源】新疆维吾尔自治区2018届高三第二次适应性(模拟)检测数学(理)试题若21nx展开式中含x项的系数为-80,则n等于(A)A.5B.6C.7D.84.【来源】浙江省金丽衢十二校联考2017届高考二模数学试题在(1+x3)(1﹣x)8的展开式中,x5的系数是(A)A.﹣28B.﹣84C.28D.84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x3)展开可知含有x3与(1﹣x)8展开的x2可得x5的系数;由(1+x3)展开可知常数项与(1﹣x)8展开的x5,同样可得x5的系数;∴含x5的项+=28x5﹣56x5=﹣28x5;∴x5的系数为﹣28,故选A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有x5的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校2016-2017学年高二下学期期中考试数学(理)试题设(3x1)4aaxax2ax3ax4,则aaaa的值为(A).012341234A.15B.16C.1D.-15答案及解析:在(3x1)4aaxax2ax3ax4中,令x0,可得a1,012340再令x1可得a0a1a2a3a416,所以a1a2a3a415.n777故选A.6.【来源】北京西城八中少年班2016-2017学年高一下学期期末考试数学试题在(xy)n的展开式中,若第七项系数最大,则n的值可能等于(D).A.13,14B.14,15C.12,13D.11,12,13答案及解析:(xy)n的展开式第七项系数为C6,且最大,可知此为展开式中间项,当展开式为奇数项时:n6,n12,2当有偶数项时n16,n11,2或n17,n13,2故n11,12,13.选D.7.【来源】广东省广州市海珠区2018届高三综合测试(一)数学(理)试题(xy)(2xy)6的展开式中x4y3的系数为(D)A.-80B.-40C.40D.808.【来源】广东省潮州市2017届高三数学二模试卷数学(理)试题在(1﹣2x)7(1+x)的展开式中,含x2项的系数为(B)A.71B.70C.21D.49答案及解析:【分析】先将问题转化为二项式(1﹣2x)7的系数问题,利用二项展开式的通项公式求出展开式的第r+1项,令x的指数分别等于1,2求出特定项的系数【解答】解:(1﹣2x)7(1+x)的展开式中x2的系数等于(1﹣2x)7展开式的x的系数+(1﹣2x)7展开式的x2的系数,(x+1)7展开式的通项为Tr+1=(﹣2)rCrxr,故展开式中x2的系数是(﹣2)2C2+(﹣2)•C1=84﹣14=60,故选:B.9.【来源】浙江省新高考研究联盟2017届第四次联考数学试题在二项式(x21)5的展开式中,含x7的项的系数是(C)xA.10B.10C.5D.510.【来源】辽宁省重点高中协作校2016-2017学年高二下学期期末考试数学(理)试题已知(1+x)n的展开式中只有第6项的二项式系数最大,则展开式奇数项的二项式系数和为(D)A.212B.211C.210D.2911.【来源】上海市浦东新区2018届高三上学期期中考试数学试卷展开式中的常数项为(C)xA.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017届高三上学期期末数学试题在(x﹣y)10的展开式中,系数最小的项是(C)A.第4项B.第5项C.第6项D.第7项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11项,奇数项为正,偶数项为负,且第6项的二项式系数最大,则展开式中系数最小的项第6项.故选C.13.【来源】浙江省金华十校联考2017届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+anxn中,若2a2+an﹣5=0,则自然数n的值是(B)A.7B.8C.9D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式Tr+1=•(﹣1)rxr可得ar=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)rxr...