电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

锐角三角函数(3)导学案及设计说明VIP免费

锐角三角函数(3)导学案及设计说明_第1页
1/3
锐角三角函数(3)导学案及设计说明_第2页
2/3
锐角三角函数(3)导学案及设计说明_第3页
3/3
<<锐角三角函数(3)>>导学案新人教版九下P52-52页学情分析:九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。并且学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有一定的推理证明能力,这为顺利完成本节课的教学任务打下了基础。学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合思想,一般到特殊思想,转化思想和建模思想,体会正弦的意义,提高解决问题的能力。学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.学习难点:进一步体会三角函数的意义.学习方法:自主探索法学习过程:一、问题引入锐角三角函数定义如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c(1)sinA=,cosA=,tanA=sinB=,cosB=,tanB=(2)sinA和cosB有什么关系?tanA与tanB呢?(3)若b=2a,求sinA的值二、新课[问题]1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?[问题]2、sin30°等于多少呢?你是怎样得到的?与同伴交流.[问题]3、cos30°等于多少?tan30°呢?[问题]4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?结论:三角函数角度sinαcosαtanαABCa┌c30°45°60°[例1]计算:(1)sin30°+cos45°;(2)sin260°+cos260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01m)例3、(1)如图1,在Rt△ABC中,∠C=90°,AB=,BC=。求∠A的度数。(2)如图2,已知圆锥的高AO等于圆锥的底面半径OB的倍,求α.63CABOBA图1图2三、课堂小结直角三角形中的边角关系看图说话:直角三角形三边的关系.直角三角形两锐角的关系.直角三角形边与角之间的关系.特殊角300,450,600角的三角函数值.互余两角之间的三角函数关系.同角之间的三角函数关系三、随堂练习1.计算:(1)sin60°-tan45°;(2)cos60°+tan60°;(3)sin45°+sin60°-2cos45°;2.某商场有一自动扶梯,其倾斜角为30°.高为7m,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼问的距离AC=24m,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1m,≈1.41,≈1.73)ABCa┌c设计说明:本节在前两节介绍了正切、正弦、余弦定义的基础上,经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义,并能够进行含有30°、45°、60°角的三角函数值的计算.因此本节的重点是利用三角函数的定义求30°、45°、60°这些特殊角的特殊三角函数值,并能够进行含有30°、45°、60°角的三角函数值的计算.难点是利用已有的数学知识推导出30°、45°、60°这些特殊角的三角函数值.三角尺是学生非常熟悉的学习用具,教学中,教师应大胆地鼓励学生用所学的数学知识如“直角三角形中,30°角所对的边等于斜边的一半”的特性,经历探索30°、45°、60°角的三角函数值的过程,发展学生的推理能力和计算能力.课后反思:本着课程标准,在深入研究教材的基础上,我觉得本节课是学生学习本章内容的重要桥梁,为了本章后面知识的学习,首先必须掌握30°、45°、60°角的三角函数值,其次能够用它们进行计算,所以我认为掌握这三个特殊角的三角函数值是教学的重点。教是为了学,学是为了用,而应用知识一直是学生的弱点,因此,我觉得运用这三个特殊角的三角函数值解决有关实际问题是教学的难点。数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

锐角三角函数(3)导学案及设计说明

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部