第二章统计2.2.2用样本的数字特征估计总体的数字特征众数、中位数和平均数思考:在城市居民月均用水量样本数据的频率分布直方图中,你认为众数应在哪个小矩形内?由此估计总体的众数是什么?月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O取最高矩形下端中点的横坐标2.25作为众数.标准差平均数向我们提供了样本数据的重要信息,但是,平均数有时也会使我们作出对总体的片面判断,难以概括样本数据的实际状态,而数据的离散程度可以用极差、方差或标准差来描述。为了表示样本数据的单位表示的波动幅度,通常要求出样本方差或者它的算术平方根.思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下:甲:78795491074乙:9578768677甲、乙两人本次射击的平均成绩分别为多少环?77xx乙甲,思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?环数频率0.40.30.20.145678910O(甲)环数频率0.40.30.20.145678910O(乙)甲的成绩比较分散,极差较大,乙的成绩相对集中,比较稳定.环数思考3:对于样本数据x1,x2,…,xn,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?nxxxxxxn......21标准差:我们把数据的方差的算术平方根叫做这组数据的标准差,它也是一个用来衡量一组数据的波动大小的重要的量。222121[()()()]nsxxxxxxn计算标准差的算法:标准差方差(1)方差:设在一组数据,x1,x2,…,xn中,各数据与它们的平均数x的差的平方分别是22212(),(),,()nxxxxxx那么我们用它们的平均数,即2222121[()()()]nsxxxxxxn来衡量这组数据的波动大小,并把它叫做这组数据的方差,一组数据方差越大,则这组数据波动越大。思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s表示.假设样本数据x1,x2,…,xn的平均数为,则标准差的计算公式是:那么标准差的取值范围是什么?标准差为0的样本数据有何特点?s≥0,标准差为0的样本数据都相等.xnxxxxxxsn22221)()()(思考5:对于一个容量为2的样本:x1,x2(x1