电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

二次根式的教学设计VIP免费

二次根式的教学设计_第1页
1/3
二次根式的教学设计_第2页
2/3
二次根式的教学设计_第3页
3/3
公开课《二次根式》的教学设计执教者:马计连授课班级:69班一、教学目标(一)知识与技能:1、理解二次根式的概念;2、二次根式有意义的判定。(二)过程与方法:1、先提出问题,让学生探讨、分析问题,师生共同归纳,得出二次根式概念;2、再对概念的内涵进行分析,得出二次根式成立的条件,并运用这一条件进行二次根式有意义的判断。(三)情感、态度与价值观:通过本节的学习培养学生:准确归纳概念的科学精神,经过探索二次根式是否有意义,发展学生观察、分析、发现问题的能力。二、教学重难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围。难点:确定二次根式中字母的取值范围。三、教学方法启发式、讲练结合四、课时安排1课时五、教学过程(一)复习提问1、什么叫平方根、算术平方根?2、说出下列各式的意义,并计算:,,,,,,,(通过练习使学生进一步理解平方根、算术平方根的概念。)观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,,,,表示的是算术平方根.我们已遇到的,,这样的式子就是我们这节课研究的内容:二次根式。(二)讲授新课1、二次根式定义:形如这样的式子我们叫做二次根式。2、对于请同学们讨论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”。(三)例题讲解例1:当a为实数时,下列各式中哪些是二次根式?分析:,,,、、、四个是二次根式。因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是二次根式.例2:x是怎样的实数时,式子在实数范围有意义?解:根据二次根式有意义的条件知:x-3≥0,解得x≥3。(说明:这个问题实质上是x是什么数时,x-3是非负数,式子有意义。)例3:当字母取何值时,下列各式为二次根式。(1);(2);(3)(教师分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。)解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。(2)-3x≥0,x≤0,即x≤0时,是二次根式。(3),且x≠0,∴x>0,当x>0时,是二次根式。(四)强化应用1、下列各式是二次根式,求式子中的字母所满足的条件:(1);(2);(分析:这个例题根据二次根式定义,只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。)2、判断下列各式是否是二次根式3、a是怎样的实数时,下列各式在实数范围内有意义?(1,2,3题学生练习本上做,并叫几个学生上黑板演示)(五)小结1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数。(六)作业布置教材P.172习题11.1;A组1;B组1.(七)板书设计21.1二次根式1、二次根式定义:形如这样的式子。2、例1,例2,例3(黑板演示)。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

二次根式的教学设计

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部