第十一章(理)第三节抽样方法、总体分布的估计题组一简单随机抽样1.对总体个数为N的一批零件,从中抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则N的值为()A.200B.150C.120D.100解析:由=0.25,得N=120.答案:C2.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为()A.B.C.D.解析:由题意知=,∴n=28,∴P==.答案:B题组二系统抽样3.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为()A.3,2B.2,3C.2,30D.30,2解析:因为92÷30不是整数,因此必须先剔除部分个体数,因为92=30×3+2,故剔除2个即可,而间隔为3.答案:A4.某班级共有52名学生,现将学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知6号,32号,45号学生在样本中,那么在样本中还有一个学生的编号是________号.解析:用系统抽样抽出的四个学生的号码从小到大成等差数列,因此,另一学生编号为6+45-32=19.答案:19题组三分层抽样5.(2009·陕西高考)某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()1A.9B.18C.27D.36解析:设老年职工人数为x人,中年职工人数为2x,所以160+x+2x=430,得x=90.由题意老年职工抽取人数为=⇒y=18.答案:B6.(2009·湖南高考)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为________.解析:由分层抽样是等概率抽样得总体中的个体数为10÷=120.答案:1207.某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,该企业统计员制作了如下的统计表格:产品类别ABC产品数量(件)1300样本容量(件)130由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是________件.解析:设C产品的数量为x,则A产品的数量为1700-x,C产品的样本容量为a,则A产品的样本容量为10+a,由分层抽样的定义可知:==,∴x=800.答案:8008.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体.求样本容量n.解:总体容量为6+12+18=36(人).当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取工程师×6=(人),抽取技术员×12=(人),抽取技工×18=(人).所以n应是6的倍数,36的约数,即n=6,12,18,36.当样本容量为(n+1)时,总体容量是35人,系统抽样的间隔为,因为必须是整数,所以n只能取6,即样本容量n=6.题组四频率分布直方图在总体估计中的应用9.在样本的频率分布直方图中,一共有m(m≥3)个小矩形,第3个小矩形的面积等于其余m-1个小矩形面积之和的,且样本容量为100,则第3组的频数是()A.0.2B.25C.20D.以上都不正确解析:第3组的频率是,样本容量为100,2∴第3组的频数为100×=20.答案:C10.(2010·株州模拟)某机构调查了当地1000名居民的月收入,并根据所得数据画了样本的频率分布直方图,为了分析居民的收入与学历等方面的关系,要从这1000人中再用分层抽样方法抽出100人做进一步调查,则在[2500,3000)(元)月收入段应抽样的人数是()A.50B.5C.10D.25解析:本题为分层抽样与频率分布直方图的应用.由图知收入在[2500,3000)上的居民人数的频率为0.0005×500=0.25,故落在该区间的人数为1000×0.25=250,若按分层抽样,由题知抽样比例为,故在[2500,3000)上抽取的居民人数为25.答案:D11.(2009·湖北高考)样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[2,10)...