3.3.1几何概型课时目标1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.1.几何概型的定义如果每个事件发生的概率只与____________________________________,则称这样的概率模型为几何概率模型,简称几何概型.根据定义,向半径为r的圆内投针,落在圆心上的概率为0,因为点的面积为0,但此事件不一定不发生.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件总数)有____________个.(2)每个基本事件出现的可能性________.3.几何概型的概率公式P(A)=一、选择题1.用力将一个长为三米的米尺拉断,假设该米尺在任何一个部位被拉断是等可能的,则米尺的断裂处恰在米尺的1米到2米刻度处的概率为()A.B.C.D.2.如图,边长为2的正方形内有一内切圆.在图形上随机撒一粒黄豆,则黄豆落到圆内的概率是()A.B.C.D.3.在1L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL,则含有麦锈病种子的概率是()A.B.C.D.4.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.1-C.D.1-5.在区间[-1,1]上任取两数x和y,组成有序实数对(x,y),记事件A为“x2+y2<1”,则P(A)为()A.B.C.πD.2π6.有四个游戏盘,如下图所示,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖机会大,他应当选择的游戏盘为()题号123456答案二、填空题7.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时看到的是绿灯的概率是________.8.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为________.9.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为________.三、解答题10.过等腰Rt△ABC的直角顶点C在∠ACB内部随机作一条射线,设射线与AB相交于点D,求AD