2.1两角差的余弦函数课后拔高提能练一、选择题1.sin245°sin125°+sin155°sin35°的值是()A.-B.-C.D.解析:选B原式=sin(270°-25°)·sin(90°+35°)+sin(180°-25°)·sin35°=-cos25°·cos35°+sin25°·sin35°=-cos(25°+35°)=-cos60°=-.2.已知α∈,sin=,则cosα=()A.-B.C.-或D.-解析:选A∵α∈,∴α+∈.又∵sin=,∴cos=-.∴cosα=cos=×+×=-.3.满足cosαcosβ=-sinαsinβ的一组α,β的值是()A.α=,β=B.α=,β=C.α=,β=D.α=,β=解析:选B由cosαcosβ=-sinαsinβ,得cosαcosβ+sinαsinβ=,即cos(α-β)=.则α=,β=满足题意,故选B.4.若sinα-sinβ=1-,cosα-cosβ=,则cos(α-β)的值为()A.B.C.D.1解析:选B由sinα-sinβ=1-平方,得sin2α-2sinαcosα+sin2β=1-+.①由cosα-cosβ=平方,得cos2α-2cosαcosβ+cos2β=.②①+②得2-2(cosαcosβ+sinαsinβ)=2-.∴cos(α-β)=.二、填空题5.cos(62°+2α)cos(32°+2α)+sin(62°+2α)sin(32°+2α)=________.解析:原式=cos[(62°+2α)-(32°+2α)]=cos30°=.答案:6.已知sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,则cos(α-β)的值为________.解析:由已知得sinα+sinβ=-sinγ,cosα+cosβ=-cosγ,两式平方相加得2+2cos(α-β)=1,∴cos(α-β)=-.答案:-7.已知α为三角形的内角,且cosα+sinα=,则α=________.解析:由已知得,cos60°·cosα+sin60°·sinα=,∴cos(60°-α)=,∵α为三角形内角,∴α=120°.答案:120°三、解答题8.已知sin=,且<α<,求cosα的值.解:∵sin=,且<α<,∴<α+<π.∴cos=-=-.∴cosα=cos=coscos+sinsin=-×+×=.9.已知a=(cosα,sinα),b=(cosβ,sinβ),|a-b|=.(1)求cos(α-β)的值;(2)若0<α<,-<β<0,且sinα=,求cosβ的值.解:(1)由|a-b|=,知(cosα-cosβ)2+(sinα-sinβ)2=,得2-2cos(α-β)=,∴cos(α-β)=.(2)∵0<α<,-<β<0,∴0<α-β<π,又cos(α-β)=,sinα=,∴sin(α-β)==,cosα==.又cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=×+×=.