问题1:如图,以40m/s的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题:(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?你能结合图形指出为什么在两个时间球的高度为15m?Oht1513?解:(1)解方程15=20t5t2t24t+3=0t1=1,t2=3(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?你能结合图形指出为什么只在一个时间球的高度为20m??(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?你能结合图形指出为什么只在一个时间球的高度为20m?Oht204?(2)解方程20=20t5t2t24t+4=0t1=t2=2当球飞行2秒时,它的高度为20米(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5?(3)解方程20.5=20t+5t2t24t+4.1=0因为(4)244.1<0,所以方程无解。球的飞行高度达不到20.5米(4)球从飞出到落地要用多少时间?你能结合图形指出为什么在两个时间球的高度为0m吗?Oht?(4)解方程0=20t5t2t24t=0t1=0,t2=4当球飞行0秒和4秒时,它的高度为0米。即0秒时球从地面飞出,4秒时球落回地面。例如,已知二次函数y=-X2+4x的值为3,求自变量x的值.就是求方程3=-X2+4x的解,例如,解方程X2-4x+3=0就是已知二次函数y=X2-4x+3的值为0,求自变量x的值.从以上可以看出,已知二次函数y的值为m,求相应自变量x的值,就是求相应一元二次方程的解.观察:下列二次函数的图象与x轴有公共点吗?如果有,公共点横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你得出相应的一元二次方程的解吗?(1)y=x2+x-2(2)y=x2-6x+9(3)y=x2-x+1二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?判别式:b2-4ac二次函数y=ax2+bx+c(a≠0)图象一元二次方程ax2+bx+c=0(a≠0)的根xyO与x轴有两个不同的交点(x1,0)(x2,0)有两个不同的解x=x1,x=x2b2-4ac>0xyO与x轴有唯一个交点)0,2(ab有两个相等的解x1=x2=ab2b2-4ac=0xyO与x轴没有交点没有实数根b2-4ac<0方法:(1)先作出图象;(2)写出交点的坐标;(3)得出方程的解.利用二次函数的图象求方程x2-x-3=0的实数根(精确到0.1).-13yx2OY=x2-x-3?)43,21(第四象限第三象限第二象限第一象限的顶点在抛物线则没有实数根的一元二次方程关于顶点坐标为则其顶点经过原点抛物线个个D.个C.个轴的交点个数有与抛物线....).(,0)3(.__________,33)2(321.0.).(32)1(22222DCBAnxynxxmxmyBAxxyxxmxxCA?解:(1)b24ac=2241(3)=16>0有两个交点(2)抛物线经过原点0=3m+m2m(m+3)=0m=3m=0(舍去)但m=3时抛物线的解析式为y=3x23x=3(x2+x+14)+34=3(x+12)2+34顶点为(12,34)(3)b24ac<0(1)241(n)<01+4n<0n<14b2a=121=12>04acb24a=41(n)(1)241=4n14n<144n>14n1>04n14>0顶点在第一象限(4)一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是____.一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)(5)根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A3