充分条件与必要条件·典型例题能力素质例1已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解 x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2p是q的充要条件的是[]A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p对C.pq但qq且qp,p是q的充分非必要条件;p,p是q的必要非充分条件;对D.pq且qp,即pq,p是q的充要条件.选D.说明:当a=0时,ax=0有无数个解.例3若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解 A是B的充分条件,∴AB① D是C成立的必要条件,∴CD② C是B成立的充要条件,∴CB③由①③得AC④由②④得AD.∴D是A成立的必要条件.选B.说明:要注意利用推出符号的传递性.例4设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的[]A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析先解不等式再判定.解解不等式|x-2|<3得-1<x<5. 0<x<5-1<x<5,但-1<x<50<x<5∴甲是乙的充分不必要条件,选A.说明:一般情况下,如果条件甲为x∈A,条件乙为x∈B.当且仅当AB时,甲为乙的充分条件;当且仅当AB时,甲为乙的必要条件;当且仅当A=B时,甲为乙的充要条件.例5设A、B、C三个集合,为使A(B∪C),条件AB是[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析可以结合图形分析.请同学们自己画图.∴A(B∪C).但是,当B=N,C=R,A=Z时,显然A(B∪C),但AB不成立,综上所述:“AB”“A(B∪C)”,而“A(B∪C)”“AB”.即“AB”是“A(B∪C)”的充分条件(不必要).选A.说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6给出下列各组条件:(1)p:ab=0,q:a2+b2=0;(2)p:xy≥0,q:|x|+|y|=|x+y|;(3)p:m>0,q:方程x2-x-m=0有实根;(4)p:|x-1|>2,q:x<-1.其中p是q的充要条件的有[]A.1组B.2组C.3组D.4组分析使用方程理论和不等式性质.解(1)p是q的必要条件(2)p是q充要条件(3)p是q的充分条件(4)p是q的必要条件.选A.说明:ab=0指其中至少有一个为零,而a2+b2=0指两个都为零.x1>3x1x2>6例7是x>32x1x2>9的条件.分析将前后两个不等式组分别作等价变形,观察两者之间的关系.解x1>3且x2>3x1+x2>6且x1x2>9,但当取x1=10,x2=2时,x1x2>6x1>3成立,而不成立(x2=2与x2>3矛盾),所以填“充分不xx>9x>3122必要”.x1>3x1-3>0说明:x2>3x2-3>0(x1-3)+(x2-3)>0(x-3)(x-3)>021x1+x2>6这一等价变形方法有时会用得上.xx-3(x+x)+9>01212点击思维c>d”和“a<b例8已知真命题“a≥b≤f”的________条件.e≤f”,则“c≤d”是“e分析 a≥bc>d(原命题),∴c≤da<b(逆否命题).而a<be≤f,∴c≤de≤f即c≤d是e≤f的充分条件.答填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9ax2+2x+1=0至少有一个负实根的充要条件是[]A.0<a≤1B.a<1C.a≤1D.0<a≤1或a<0分析此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a=1时,方程有负根x=-1,当a=0时,x=1-.故排除A、B、D选C.21解常规方法:当a=0时,x=-.2当a≠0时1.a>0,则ax2+2x+1=0至少有一个负实根21-a<20<a≤1.2.a<0,则ax2+2x+1=0至少有一个负实根2>21-a>21-a>1a<0.综上所述a≤1.244a<02a244a<02a即ax2+2x+1=0至少有一个...