导数压轴题题型1.高考命题回顾例1已知函数f(x)=ex-ln(x+m).(2013全国新课标Ⅱ卷)(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.110(1)解f(x)=e-ln(x+m)f′(x)=e-f′(0)=e-=0m=1,x+m0+mxx1exx+1-1定义域为{x|x>-1},f′(x)=e-=,x+mx+1x显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.1(x>-2).x+2(2)证明g(x)=e-ln(x+2),则g′(x)=e-xxh(x)=g′(x)=ex-11(x>-2)h′(x)=ex+>0,x+2x+22所以h(x)是增函数,h(x)=0至多只有一个实数根,1111又g′(-)=-<0,g′(0)=1->0,22e321所以h(x)=g′(x)=0的唯一实根在区间-,0内,2设g′(x)=0的根为t,则有g′(t)=et-11=0-g′(t)=0,g(x)单调递增;11+t2所以g(x)min=g(t)=e-ln(t+2)=+t=>0,t+2t+2t当m≤2时,有ln(x+m)≤ln(x+2),所以f(x)=ex-ln(x+m)≥ex-ln(x+2)=g(x)≥g(x)min>0.例2已知函数f(x)满足f(x)f'(1)ex1f(0)x12x(2012全国新课标)2(1)求f(x)的解析式及单调区间;(2)若f(x)12xaxb,求(a1)b的最大值。21(1)f(x)f(1)ex1f(0)xx2f(x)f(1)ex1f(0)x2令x1得:f(0)11得:f(x)exxx2g(x)f(x)ex1x2g(x)ex10yg(x)在xR上单调递增1得:f(x)的解析式为f(x)exxx22且单调递增区间为(0,),单调递减区间为(,0)(2)f(x)12xaxbh(x)ex(a1)xb0得h(x)ex(a1)2①当a10时,h(x)0yh(x)在xR上单调递增x时,h(x)与h(x)0矛盾②当a10时,h(x)0xln(a1),h(x)0xln(a1)得:当xln(a1)时,h(x)min(a1)(a1)ln(a1)b0令F(x)x2x2lnx(x0);则F(x)x(12lnx)e2e2当xe时,F(x)max当ae1,be时,(a1)b的最大值为例3已知函数f(x)alnxb,曲线yf(x)在点(1,f(1))处的切线方程为x2y30。x1x(2011全国新课标)(Ⅰ)求a、b的值;(Ⅱ)如果当x0,且x1时,f(x)lnxk,求k的取值范围。x1x(解(Ⅰ)f'(x)x1lnx)1bxx2y30由于直线的斜率为,222(x1)xf(1)1,b1,且过点(1,1),故1即a1f'(1),b,222解得a1,b1。(Ⅱ)由(Ⅰ)知f(x)lnx1,所以x1xlnxk1(k1)(x21)f(x)()(2lnx)。x1x1x2x(k1)(x21)2x(k1)(x21)考虑函数h(x)2lnx。(x0),则h'(x)2xx22k(x1)(x1)(i)设k0,由h'(x)知,当x1时,h'(x)0,h(x)递减。而h(1)02x故当x(0,1)时,h(x)0,可得1h(x)0;21x当x(1,+)时,h(x)<0,可得1h(x)>021x从而当x>0,且x1时,f(x)-(lnxklnxk+)>0,即f(x)>+.x1xx1x(ii)设00,1k1k.11)时,h(x)>0,可得h(x)<0,1k1x2故h(x)>0,而h(1)=0,故当x(1,与题设矛盾。'2'(iii)设k1.此时x12x,(k1)(x21)2x0h(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得1h(x)<0,与题设矛盾。21x综合得,k的取值范围为(-,0]例4已知函数f(x)=(x+3x+ax+b)e.(2009宁夏、海南)(1)若a=b=-3,求f(x)的单调区间;(2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明β-α>6.解:(1)当a=b=-3时,f(x)=(x3+3x2-3x-3)e-x,故f′(x)=-(x3+3x2-3x-3)e-x+(3x2+6x-3)e-x=-e-x(x3-9x)=-x(x-3)(x+3)e-x.当x<-3或0<x<3时,f′(x)>0;当-3<x<0或x>3时,f′(x)<0.从而f(x)在(-∞,-3),(0,3)单调增加,在(-3,0),(3,+∞)单调减少.(2)f′(x)=-(x3+3x2+ax+b)e-x+(3x2+6x+a)e-x=-e-x[x3+(a-6)x+b-a].由条件得f′(2)=0,即2+2(a-6)+b-...