电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学充分条件、必要条件与命题的四种形式例题解析VIP免费

高中数学充分条件、必要条件与命题的四种形式例题解析_第1页
1/13
高中数学充分条件、必要条件与命题的四种形式例题解析_第2页
2/13
高中数学充分条件、必要条件与命题的四种形式例题解析_第3页
3/13
§1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件学习目标1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.知识点一充分条件与必要条件1.当命题“如果p,则q”经过推理证明判定为真命题时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.这几种形式的表达,讲的是同一个逻辑关系,只是说法不同而已.2.若p⇒q,但q⇏p,称p是q的充分不必要条件,若q⇒p,但p⇏q,称p是q的必要不充分条件.知识点二充要条件1.一般地,如果p⇒q,且q⇒p,就记作p⇔q,此时,我们说,p是q的充分且必要条件,简称充要条件.p是q的充要条件,又常说成q当且仅当p,或p与q等价.2.从集合的角度判断充分条件、必要条件和充要条件.若A⊆B,则p是q的充分条件,若AB,则p是q的充分不必要条件若B⊆A,则p是q的必要条件,若BA,则p是q的必要不充分条件若A=B,则p,q互为充要条件若A⊈B且B⊈A,则p既不是q的充分条件,也不是q的必要条件其中p:A={x|p(x)成立},q:B={x|q(x)成立}.1.若p是q的充分条件,则p是唯一的.(×)2.“若p,则q”是真命题,而“若q,则p”是假命题,则p是q的充分不必要条件.(√)3.q不是p的必要条件时,“p⇏q”成立.(√)4.若p是q的充要条件,则命题p和q是两个相互等价的命题.(√)5.若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)题型一充分、必要、充要条件的判断例1下列各题中,p是q的什么条件?(指充分不必要、必要不充分、充要、既不充分也不必要条件)(1)p:x=1或x=2,q:x-1=x-1;(2)p:m>0,q:x2+x-m=0有实根;(3)p:四边形的对角线相等,q:四边形是平行四边形.考点充要条件的概念及判断题点充要条件的判断解(1)因为x=1或x=2⇒x-1=所以p是q的充要条件.(2)因为m>0⇒方程x2+x-m=0的判别式Δ=1+4m>0,即方程有实根,方程x2+x-m=0有实根,即Δ=1+4m≥0m>0,所以p是q的充分不必要条件.(3)p是q的既不充分也不必要条件.反思感悟充分条件、必要条件的两种常用的判断方法(1)定义法:①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件;③尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p的必要条件;②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同时q也不是p的必要条件.跟踪训练1下列各题中,试分别指出p是q的什么条件.x-1,x-1=x-1⇒x=1或x=2,(1)p:两个三角形相似,q:两个三角形全等;(2)p:f(x)=x,q:f(x)在(-∞,+∞)上为增函数;(3)p:A⊆B,q:A∩B=A;(4)p:a>b,q:ac>bc.考点充要条件的概念及判断题点充要条件的判断解(1) 两个三角形相似⇏两个三角形全等,但两个三角形全等⇒两个三角形相似,∴p是q的必要不充分条件.(2) f(x)=x⇒f(x)在(-∞,+∞)上为增函数,但f(x)在(-∞,+∞)上为增函数⇏f(x)=x,∴p是q的充分不必要条件.(3) p⇒q,且q⇒p,∴p是q的充要条件.(4) p⇏q,且q⇏p,∴p是q的既不充分也不必要条件.题型二充分条件、必要条件、充要条件的应用命题角度1由充分条件、必要条件求参数范围例2已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若p是q的必要不充分条件,求实数m的取值范围.考点充分、必要条件的综合应用题点由充分、必要条件求参数的范围解p:-2≤x≤10,q:1-m≤x≤1+m(m>0).因为p是q的必要不充分条件,所以q是p的充分不必要条件,即{x|1-m≤x≤1+m}{x|-2≤x≤10},1-m≥-2,1-m>-2,故有或解得m≤3.1+m<101+m≤10,又m>0,所以实数m的取值范围为{m|00).因为p是q的充分不必要条件,设p代表的集合为A,q代表的集合为B,所以A...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学充分条件、必要条件与命题的四种形式例题解析

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部