电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

等差数列前n项和说课稿VIP免费

等差数列前n项和说课稿_第1页
等差数列前n项和说课稿_第2页
等差数列前n项和说课稿_第3页
《等差数列前n项和》说课稿一、教材分析●教学内容《等差数列前n项和》必修5第二章第三节“等差数列前n项和”的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。●地位与作用本节对“等差数列前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其学习平台是学生已掌握等差数列的性质以及高斯求和法等相关知识。对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加求和法,具有承上启下的重要作用。二、学情分析●知识基础:高二年级学生已掌握了函数,数列等有关基础知识,并且在初中已了解特殊的数列求和。●认知水平与能力:高二学生已初步具有抽象逻辑思维能力,能在教师的引导下独立地解决问题。●任教班级学生特点:我班学生基础知识较扎实、思维较活跃,能够很好的掌握教材上的内容,能较好地应用数形结合的方法解决问题,但处理抽象问题的能力还有待进一步提高。概述本课的教学设计分为四个部分,包括:目标分析,教学方法,过程设计和教学反思。设计反映了等差数列求和公式推导过程中数学思想方法——倒序相加法的生成过程,这是设计的数学本质基础;设计中结合本班学生的学习的实际情况,从而确定了教学活动的环节。以这些分析为基础从而确定教学目标,而过程设计则针对目标从六个环节进行具体的设计。下面从如下几个方面进行详细说明。一、教学内容的数学本质及教学目标定位等差数列前n项和,这是教材给出的前n项和的定义,但需要说明的是这只是一个形式定义,表示求和是一般意义的加法运算,而本节课要推导的等差数列的前n项和的数学本质是寻求与n的一个函数关系式,如果这个关系式能够用解析式来表达,那么我们就完全把握了这个求和公式。本节课是等差数列的前n项和的第一课时,从知识点来说,掌握求和公式对没个学生来说并不困难,而难点是在于如何从求和公式的推导过程中渗透倒序相加求和的思想方法,因此,依据教学大纲的教学要求,渗透新课标理念,我首先对学情进行了具体分析,并结合学情分析,制定了本节课的教学目标。1Sn=a1+a2+⋯+an−1+an首先,高二学生已学习了函数,数列等有关基础知识,并且在初中已了解特殊的数列求和,并且高一学生的抽象逻辑推理能力基本形成,抽象辩证,逻辑推论能力开始产生,能在教师的引导下独立地解决问题。另外,我还对我班学生的具体情况做了如下分析:我班学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题,但是部分学生有些粗心,处理抽象问题的能力还有待进一步提高.于是,结合以上的学情分析,我从“知识技能”、“数学思考”、“解决问题”和“情感态度”设定目标。其中知识技能目标是:(1)理解等差数列前n项和的概念意义与公式意义的区别与联系;(2)掌握等差数列的前n项和公式的推导过程;(3)会灵活运用等差数列的前n项和公式.“数学思考”则是:(1)通过对等差数列前n项和公式的推导过程,渗透倒序相加求和的数学思想.(2)通过公式的运用体会方程的思想.(3)通过灵活运用公式的过程,提高学生类比化归、数形结合的能力.以此来解决如何推导等差数列前n项和的问题。并且从过程渗透了本课的情感态度目标:结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。以上是对教学目标定位的说明。二、学习基础及作用本节内容是现行高中教材第二章第三节的第一课时,本节对“等差数列前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其学习平台是学生已掌握等差数列的性质以及高斯求和法等相关知识。对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加求和法,具有承上启下的重要作用.对求和公式的认识中,将公式1与公式2与梯形的面积公式建立了联系,同时也回顾了以往推导梯形面积公式的方法,同样用到了倒序的思想,前后呼应。三、教学诊断分析1、根据教学经验及学生反馈的信息,在本课的学习中,学生对公式的掌握及简单应用并不困难,而难...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部