3.1.1圆的对称性(第一课时)教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是旋转对称图形和中心对称图形及圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.通过对圆的图形的认识,使学生认识新的几何图形的对称美,体会所体现出的完美性,培养学生美的感受,激发学习兴趣.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.教学过程Ⅰ.创设现实情境,引入新课[师]前面我们已经学习过两种常见的几何图形,三角形、四边形.大家回忆一下我们是通过一些什么方法研究了它们的性质?[师]好!大家总结得很详细,今天我们继续运用这些方法来学习和研究小学已接触过的另一种常见的几何图形——圆.和三角形、四边形一样,圆的性质与应用同样需要通过轴反射、平移、旋转、推理证明等方法去学习和探究.Ⅱ.讲授新课[师]日常生活中同学们经常见到的汽车、摩托车、自行车等一些交通运输工具的车轮是什么形状的?[师]请同学们思考一个问题,为什么车轮要做成圆形呢?能否做成长方形或正方形?老师这里有两个车轮模具,一个是圆形,一个是正方形.我们一起观察一下这两个车轮在行进中有些什么特点?大家讨论.讨论如下图:[师]通过我们平常乘坐汽车,或骑自行车感受到,圆形的车轮只要路面平整,车子就不会上下颠簸,人坐在车上就感到平稳、舒服.假如车轮是方形的,那么车子在行进中,就会对人产生一种上下颠簸,坐着不舒服的感觉.下面我们一起来探讨一下,是什么原因导致车轮要做成圆形,不能做成方形.看P83图,A、B表示车轮边缘上的两点,点O表示车轮的轴心,A、O之间的距离与B、O之间的距离有什么关系?用什么方法可以判断,大家动手做一做.[师]同学们做得很好.大家通过不同的方法,得到的结果是什么?[生]OA=OB.[师]刚才是两个特殊点,现在我们在车轮边缘上任意取一点C,要使车轮能够平稳地滚动,C、O之间的距离与A、O之间的距离应有什么关系?[生]CO=AO.这样才能保证车轮平稳地滚动.[师]同学们以前画过圆,画一个圆很简单.将圆规的一个脚固定,另一个带有铅笔头的脚转一圈,一个圆就画出来了.固定的那一点称为圆心.所画得的圆圈叫圆周.从画圆的过程中可以看到,圆规两个脚之间的长度始终保持不变,也就是说圆心到圆周上任意一点的距离都相等.这是圆的一个重要而又最基本的性质.人们就是用圆的这种性质来制造车轮的,车轴总是安装在车轮的圆心位置上,这样,车轴到车轮边缘的距离处处相等.也就是说,车子在行进中,车轴离路面的距离总是一样的.车子在平路上行走较平稳,假如是方形的,车轴到路1BACDOM面的距离时大时小,车子就会产生颠簸.2、圆的定义:平面内到一定点的距离等于定长的所有点组成的图形叫做圆(circle).其中,定点称为圆心(Centreofacircle),定长称为半径(radius).以点O为圆心的圆记作⊙O,读作“圆O”.注意:确定一个圆需要两个要素,一是位置,二是大小.圆心确定其位置,半径确定其大小.只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确定.只有圆心和半径都固定,圆才被唯一确定.问:1.体育教师想利用一根3m长的绳子在操场上画一个半径为3m的圆,你能帮他想想办法吗?答:将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈,B所经过的路径就是所希望的圆.小结:圆也可以看成平面内一动点绕一个定点旋转一周所形成的图形。同时,我们又把①连结圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图24-1线段AB;直径是弦,是圆内最长的弦,但弦不一定是直径.3、圆的三种对称性(1)什么是相等的圆(等圆)?(2)圆有几种对称性?圆是旋转对称图形,即圆绕圆心旋转任意角度,都能与自身重合。特别地,圆是中心对称图形,圆心是它的对称中心。圆是轴对...