训练15概率与统计(备用)(参考时间:80分钟)1.(2012·无锡模拟)从某小学随机抽取100名同学,这些同学身高都不低于100厘米,将他们身高(单位:厘米)数据绘制成频率分布直方图(如右图).现用分层抽样的方法从身高在[120,130),[130,140),[140,150]三组学生中,选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.2.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.3.(2011·课标全国)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为________.4.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.5.一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.6.(2010·北京海淀区期末)先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为________.7.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.8.(2012·南京、盐城模拟)袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是________.9.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.10.设f(x)=x2-2x-3(x∈R),则在区间[-π,π]上随机取一个数x,使f(x)<0的概率为________.11.(2011·福建)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于________.12.(2012·无锡模拟)从一副没有大小王的52张扑克牌中随机抽取1张,事件A为“抽得红桃8”,事件B为“抽得为黑桃”,则事件“A+B”的概率值是________(结果用最简分数表示).13.在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________.14.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x,y,则为整数的概率是________.参考答案1训练15概率与统计(备用)1.解析由(0.005+0.010+0.020+0.035+a)×10=1得a=0.030,因此[120,130),[130,140),[140,150]三组学生人数分别为:0.3×100=30,0.20×100=20,0.10×100=10,所以,从身高在[140,150]内的学生中选取的人数应为×18=3.答案32.解析因为从5名候选学生中任选2名学生的方法共有10种,而甲、乙、丙中有2个被选中的方法有3种,所以甲、乙、丙中有2个被选中的概率为.答案3.解析甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P==.答案4.解析分层抽样应按各层所占的比例从总体中抽取. 120∶16∶24=15∶2∶3,又共抽出20人,∴各层抽取人数分别为20×=15(人),20×=2(人),20×=3(人).答案15、2、35.解析有放回地摸球,基本事件总数为25;两次都是白球所包含的基本事件为4.所以两次摸出的球都是白球的概率为.答案6.解析由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为=.答案7.解析平均数==18,故方差s2=[(-4)2+(-1)2+02+02+22+32)]=5.答案58.解析总的取法是4组,能构成等差数列的有{2,3,4},{2,4,6}2组;故所求概率为P==.答案9.解析从长度分别为2,3,4,5的四条线段中任意取出三条这一事件共有4种,而不能构成三角形的情形为2,3,5.所以这三条线段为边可以构成三角形的概率是P=.答案10.解析几何概型,x2-2x-3<0⇒-1<x<3; x∈[-π,π],∴P==.答案11.解析这是一道几何概型的概率...