函数的奇偶性基础知识自主学习要点梳理1.奇、偶函数的概念一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有,那么称函数y=f(x)是偶函数.如果对于任意的x∈A都有,那么称函数y=f(x)是奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.f(-x)=f(x)f(-x)=-f(x)2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性,偶函数在关于原点对称的区间上的单调性.(2)在公共定义域内,①两个奇函数的和是,两个奇函数的积是偶函数;②两个偶函数的和、积都是;③一个奇函数,一个偶函数的积是.相同相反奇函数偶函数奇函数3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中的正数,那么这个最小正数就叫做f(x)的最小正周期.f(x)存在一个最小[难点正本疑点清源]1.函数奇偶性的判断判断函数的奇偶性主要根据定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x)(或f(-x)=-f(x)),那么函数f(x)就叫做偶函数(或奇函数).其中包含两个必备条件:①定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域有利于准确简捷地解决问题;②判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.2.函数奇偶性的性质(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)若f(x)为偶函数,则f(-x)=f(x)=f(|x|).(3)若奇函数f(x)定义域中含有0,则必有f(0)=0.f(0)=0是f(x)为奇函数的既不充分也不必要条件.(4)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.(5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”.(6)既奇又偶的函数有无穷多个(如f(x)=0,定义域是关于原点对称的任意一个数集).基础自测1.下列函数中,所有奇函数的序号是________.①f(x)=2x4+3x2;②f(x)=x3-2x;③f(x)=x2+1x;④f(x)=x3+1.解析由奇偶函数的定义知:①为偶函数;②③为奇函数;④既不是偶函数,也不是奇函数.②③2.若函数f(x)=22x+1+m为奇函数,则实数m=_____.-13.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x)>0的x的取值范围是___________________.解析画草图,由f(x)为奇函数的性质知:f(x)>0的x的取值范围是(-1,0)∪(1,+∞).(-1,0)∪(1,+∞)4.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是.解析依题意得a-1=-2ab=0,∴a=13b=0,∴a+b=13+0=13.135.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2011)=.解析 f(x)的周期T=4,∴f(2011)=f(3)=f(-1)=-f(1)=-2.-2题型一函数奇偶性的判断例1判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x1+x;(3)f(x)=4-x2|x+3|-3.思维启迪确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再验证f(-x)=±f(x)或其等价形式f(-x)±f(x)=0是否成立.题型分类深度剖析解(1)由3-x2≥0x2-3≥0,得x=±3.∴f(x)的定义域为{-3,3}.又f(3)+f(-3)=0,f(3)-f(-3)=0.即f(x)=±f(-x).∴f(x)既是奇函数,又是偶函数.(2)由1-x1+x≥01+x≠0,得-1