电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

一元二次方程的解法复习课1VIP免费

一元二次方程的解法复习课1_第1页
1/20
一元二次方程的解法复习课1_第2页
2/20
一元二次方程的解法复习课1_第3页
3/20
一元二次方程的解法腾达中学:陈言明2008.9.25(1)直接开平方法ax2=b(a≠0)(2)因式分解法1、提公因式法,平方差公式,完全平方公式2、十字相乘法(3)配方法当二次项系数为1的时候,方程两边同加上一次项系数一半的平方(4)公式法当b-4ac≥0时,x=aacbb242一直接开平方法依据:平方根的意义,即如果x2=a,那么x=.a这种方法称为直接开平方法。解题步骤:1,将一元二次方程常数项移到方程的一边。2,利用平方根的意义,两边同时开平方。3,得到形如:x=.a的一元一次方程。4,写出方程的解x1=?,x2=?1、(3x-2)²-49=02、(3x-4)²=(4x-3)²解:移项,得:(3x-2)²=49两边开平方,得:3x-2=±7所以:x=所以x1=3,x2=-35372解:两边开平方,得:3x-4=±(4x-3)3x-4=4x-3或3x-4=-4x+3-x=1或7x=7x=-1,x=1例题讲解二因式分解法)2(5)2(3)1(xxx)2(5)2(3xxx解:移项,得(32)6(32)0xxx1提公因式法=0(2)解:提公因式得:(32)(6)0xx32060xx或123x26x提公因式得(35)(2)0xx35020xx或153x22x2平方差公式与完全平方公式220xa()()0xaxa2220xaxa形如运用平方差公式得:2()0xa12xxa12xxa00xaxa或1xa2xa形如的式子运用完全平方公式得:或例题讲解例1解下列方程(1)216(2)90x29(2)16x324x解:原方程变形为:154x2114x(2)10xx2210xx2(1)0x121xx直接开平方得:(2)解:原方程变形为:3十字相乘法1二次项系数为1的情况:将一元二次方程常数项进行分解成两个数(式)p,q的乘积的形式,且p+q=一次项系数。步骤:2二次项系数不为1的情况:将二次项系数分成两个数(式)a,b的乘积的形式,常数项分解成p,q的乘积的形式,且aq+bp=一次项系数。PQABPQ分解结果为(x+p)(x+q)=0分解结果为(ax+p)(bx+q)=01106)23()2(2xx0)2)(3(xx解:原方程变形为,0203xx或.2,321xx例题讲解用十字相乘法解下列方程18)2)(5)(1(xx解:整理原方程,得x2-3x-28=0(x-7)(x+4)=0x-7=0或x+4=0x1=7,x2=-402222baaxxx的方程解关于.,21baxbax0)]()][([baxbax解:0)(0)(baxbax或11)()(baba例题讲解三配方法我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法平方根的意义:完全平方式:式子a2±2ab+b2叫完全平方式,且a2±2ab+b2=(a±b)2.如果x2=a,那么x=.a用配方法解一元二次方程的方法的助手:用配方法解一元二次方程:2x2-9x+8=0.0429:2xx解.41749x.4494929222xx.1617492x.41749x.4292xx1.化1:把二次项系数化为1;3.配方:方程两边都加上一次项系数绝对值一半的平方;4.变形:方程左边分解因式,右边合并同类;5.开方:两边开平方;6.求解:解一元一次方程;7.定解:写出原方程的解.2.移项:把常数项移到方程的右边;.4179;417921xx例题讲解例1.用配方法解下列方程x2+6x-7=0762xx:解97962xx1632x43x7121xx例题讲解例2.用配方法解下列方程2x2+8x-5=02542xx:解425442xx21322x2262x2226222621xx四公式法一般地,对于一元二次方程ax2+bx+c=0(a≠0).04.2422acbaacbbx上面这个式子称为一元二次方程的求根公式.用求根公式解一元二次方程的方法称为公式法:,042它的根是时当acb提示:用公式法解一元二次方程的前提是:1.必需是一元二次方程。2.b2-4ac≥0.例1用公式法解方程2x2-9x+8=0.8,9,2:cba解.417922179242aacbbx1.变形:化已知方程为一般形式;3.计算:b2-4ac的值;4.代入:把有关数值代入公式计算;5.定解:写出原方程的根.2.确定系数:用a,b,c写出各项系数;.0178249422acb.4179;417921xx例题讲解例2.用公式法解方程2x2+5x-3=0解: a=2b=5...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

一元二次方程的解法复习课1

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部