等腰三角形(一)如图12.3-1拿出一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它打开,得到的三角形ABC有什么特点?探究腰—相等的两边底—除腰外的一边顶角—两腰的夹角底角—腰与底的夹角A顶角腰腰B底角底角C底边A顶角腰腰B底角底角C底边有两边相等的三角形叫做等腰三角形。(如AB=AC,△ABC为等腰三角形)概念:想一想1、上面剪出的等腰三角形是抽对称图形吗?2、把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。3、由这些重合的线段和角,你能发现等腰三角形的哪些性质呢?说一说你的猜想。重合的线段重合的角ACBDAB=ACBD=CDAD=AD∠B=∠C.∠BAD=∠CAD∠ADB=∠ADC等腰三角形除了两腰相等以等腰三角形除了两腰相等以外外,,你还能发现它的其他性质吗你还能发现它的其他性质吗??猜想猜想与论证等腰三角形的两个底角相等。已知:△ABC中,AB=AC求证:∠B=C分析:1.如何证明两个角相等?2.如何构造两个全等的三角形?ABCDABC则有∠1=∠2D12在△ABD和△ACD中证明:作顶角的平分线AD,AB=AC∠1=∠2AD=AD(公共边)∴△ABD≌△ACD(SAS)∴∠B=∠C(全等三角形对应角相等)方法一ABC则有BD=CDD在△ABD和△ACD中证明:作△ABC的中线ADAB=ACBD=CDAD=AD(公共边)∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)方法二ABC则有∠ADB=∠ADC=90ºD在Rt△ABD和Rt△ACD中证明:作△ABC的高线ADAB=ACAD=AD(公共边)∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C(全等三角形对应角相等)方法三性质1:等腰三角形的两个底角相等(简写为“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高线相互重合。(简称为”三线合一”)我们可以发现等腰三角形的性质:例1:如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD求△ABC各角的度数.解:∵AB=AC,BD=BC=AD∴∠ABC=∠C=∠BDC∠A=∠ABD设∠A=x,则∠BDC=∠A+∠ABD=2x从而∠ABC=∠C=∠BDC=2x于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180解得x=36在△ABC中,∠A=36,∠ABC=∠C=72例题解析练一练1、等腰三角形的一个角是40度,它的另外两个角的度数是多少呢?2、等腰三角形的一个角是100度,它的另外两个角的度数是多少呢?3、等腰三角形的底边长为7cm,一腰长的中线把周长分为两部分,其差为3cm,则等腰三角形的腰长为多少?概念:有两条边相等的三角形是等腰三角形等腰三角形是轴对称图形,顶角平分线(或底边中线或底边上的高线)所在直线是它的对称轴.1.等腰三角形2.能根据等腰三角形的概念与性质求等腰三角形的边长、周长及其知道一角求其它两角小结习题12.31,2,4,7作业布置