先进PID控制及其MATLAB仿真控制工程与控制理论课程设计讲座主讲人付冬梅自动化系第1章数字PID控制1.1PID控制原理1.2连续系统的模拟PID仿真1.3数字PID控制1.1PID控制原理模拟PID控制系统原理框图1.1PID控制原理PID是一种线性控制器,它根据给定值rin(t)与实际输出值yout(t)构成控制方案:PID的控制规律为:()()()inoutetrtyt011()()()()tpDdetutketetdtTTdtsTsTksEsUsGDp111)()()(1.1PID控制原理PID控制器各校正环节的作用如下:比例环节:成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减小偏差。积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数T,T越大,积分作用越弱,反之则越强。微分环节:反映偏差信号的变化趋势,并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。1.2连续系统的基本PID仿真1.2.1基本的PID控制1.2.2线性时变系统的PID控制以二阶线性传递函数为被控对象,进行模拟PID控制。在信号发生器中选择正弦信号,仿真时取Kp=60,Ki=1,Kd=3,输入指令为其中,A=1.0,f=0.20Hz被控对象模型选定为:()sin(2)inrtAft1.2连续系统的基本PID仿真2133()25Gsss连续系统PID的Simulink仿真程序1.2连续系统的基本PID仿真连续系统的模拟PID控制正弦响应1.2连续系统的基本PID仿真1.3数字PID控制1.3.1位置式PID控制算法1.3.2连续系统的数字PID控制仿真1.3.3离散系统的数字PID控制仿真1.3.4增量式PID控制算法及仿真1.3.5积分分离PID控制算法及仿真1.3.6抗积分饱和PID控制算法及仿真1.3.7梯形积分PID控制算法1.3.8变速积分PID算法及仿真1.3数字PID控制1.3.9不完全微分PID控制算法及仿真1.3.10微分先行PID控制算法及仿真1.3.11带死区的PID控制算法及仿真1.3.1位置式PID控制算法按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,即:000(0,1,2,3)()()()()()((1))()(1)kktjjtkTketdtTejTejdetekTekTekekdtTT1.3.1位置式PID控制算法可得离散表达式:式中,Ki=Kp/Ti,Kd=KpTd,T为采样周期,K为采样序号,k=1,2,……,e(k-1)和e(k)分别为第(k-1)和第k时刻所得的偏差信号。010()(()()(()(1)))()(1)()()kDpjkpidjTTukkekejekekTTekekkekkejTkT1.3.1位置式PID控制算法位置式PID控制系统根据位置式PID控制算法得到其程序框图。在仿真过程中,可根据实际情况,对控制器的输出进行限幅:[-10,10]。1.3.1位置式PID控制算法1.3.2连续系统的数字PID控制仿真本方法可实现D/A及A/D的功能,符合数字实时控制的真实情况,计算机及DSP的实时PID控制都属于这种情况。采用MATLAB语句形式进行仿真。被控对象为一个电机模型传递函数:式中,J=0.0067,B=0.10BsJssG21)(1.3.2连续系统的数字PID控制仿真PID正弦跟踪1.3.2连续系统的数字PID控制仿真采用Simulink进行仿真。被控对象为三阶传递函数,采用Simulink模块与M函数相结合的形式,利用ODE45的方法求解连续对象方程,主程序由Simulink模块实现,控制器由M函数实现。输入指令信号为一个采样周期1ms的正弦信号。采用PID方法设计控制器,其中,Kp=1.5,Ki=2.0,Kd=0.05。误差的初始化是通过时钟功能实现的,从而在M函数中实现了误差的积分和微分。1.3.2连续系统的数字PID控制仿真Simulink仿真程序图1.3.2连续系统的数字PID控制仿真PID正弦跟踪结果1.3.3离散系统的数字PID控制仿真仿真实例设被控制对象为:采样时间为1ms,采用Z变换进行离散化,经过Z变换后的离散化对象为:ssSsG1047035.87523500)(23()(2)(1)(3)(2)(4)(3)(2)(1)(3)(2)(4)(3)outoutoutoutykaykaykaykbukbukbuk1.3.3离散系统的数字PID控制仿真离散PID控制的Simulink主程序1.3.3离散系统的数字PID控制仿真阶跃响应结果1.3.4增量式PID控制算法及...