第3章液压系统的振动、噪声诊断与排除液压设备在运行时产生的振动、噪声超过了正常状态,表明系统存在异常。振动、噪声的诊断与排除是液压技术中较复杂的问题。第1节液压系统的振动与噪声的来源液压系统的振动噪声分为机械振动噪声和流体振动噪声。~1.机械振动噪声机械振动噪声是由于零件之间发生接触、冲击和振动引起的。例如,液压系统中的电动机、液压泵和液压马达这些高速回转体,如果转动部分不平衡会产生周期性的不平衡离心力,引起转轴的弯曲振动,因而产生噪声。电动机噪声除机械噪声外,还有通风噪声(如冷却风扇声和风声)和电磁噪声(电动机通电后的电磁噪声和蝉鸣声)。当电动机和液压泵不同轴以致联轴器偏斜也会引起振动噪声。齿轮泵工作时,齿轮啮合的频率、齿轮啮合受到圆周方向的强制力引起圆周方向的振动,而轮齿啮合产生圆周方向的振动使齿面受到动载荷而引起轴向振动(产生径向方向的振动的同时产生轴向振动),从而产生噪声。滚动轴承中滚动体在滚道中滚动时产生交变力而引起轴承环固有振动形成的噪声;滚动体移动引起噪声;滚动体和滚道之间的弹性接触引起噪声;滚道中的加工波纹使轴承处于偏心转动引起噪声;滚动体中进入灰尘或有伤痕或锈蚀时发出噪声。液压零件频繁接触而引起噪声,电磁铁的吸合产生峰鸣声、换向阀阀心移动时发出冲击声、溢流阀在泄压时阀心产生高频振动声。油箱噪声。油箱本身并不发出噪声,但如果液压泵和电动机直接装在油箱上,它们的振动引起油箱产生共振,会使噪声进一步扩大。2.流体振动噪声流体噪声由油液的流速、压力的突然变化及气穴爆炸等引起。在液压系统中,液压泵是主要噪声源,其噪声量约占整个系统噪声的75%左右,主要由泵的压力和流量的周期性变化以及气穴现象引起。在液压泵吸油和压油循环中,产生周期性的压力和流量变化形成压力脉动,引起液压振动,并经出口向整个液压系统传播,液压回路的管道和阀类将液压泵的脉动液压油压力反射,在回路中产生波动而使液压泵共振,以致重新使回路受到激振,发出噪声。从阀里喷出的高压流体,在喷流和周围流体之间产生剪切流、紊流或涡流,由此产生高频噪声(涡流一般从阀开始,一直遍布到最下边的液流)。在流动的液体中,由于流速变化引起压力降而产生气泡(即气穴现象),这是因为在油液中,一般都混入少量的空气,其中一部分溶解在油中,也有一部分在油中成为微小的气泡;当油液流经管路或元件特别狭窄地方时,速度急剧上升,压力迅速下降,当压力低于工作温度下油液的气体分离压力时,溶解予油中舶气体迅速地大量分离出来,油液中出现大量气泡;当气泡随液流到达压力较高部分时,气泡被压缩而导致体积较小,此时在气泡内蓄存了一定的能量,当压力增大到某一数值时,气泡溃灭,产生局部的液压冲击(局部压力可达几百个大气压),同时产生爆炸性噪声。在管路内流动的液体常因突然关闭阀门而在管内形成一个很高的压力峰值。液压冲击不仅引起巨大的振动和噪声,压力峰值有时还大到足以使液压系统损坏的程度。3.液压泵和液压马达的振动与噪声液压泵有多种振动与噪声,其原因与机理差异很失。如液压泵的运动件磨损,轴向、径向间隙过大,会引起压力与流量的脉动,同时使噪声增大。液压泵的压力波动也会使阀件产生共振,因而增大噪声。控制阀节流开口小,流速高,易产生涡流,有时阀心迫击阀座,同样会加大振动。产生这种现象时,可用小规格的控制阀来替换,或将节流口开大。另外,油的粘度太高,吸油过滤器阻塞或油面过低,引起泵吸油困难,产生气穴,引起严重的噪声。在电网中,电网的电压、负载发生变化,本身的压力波动和流量脉动等,均能引发液压泵的噪声和振动。电网的电压波动会引起液压泵的流量脉动,致使泵的出口及管路压力波动,这是外因引起的流量与压力波动所产生的流体噪声。要使液压泵的噪声最低,电网容量要足够大;在选择液压泵时,一在保证所需的功率和流量的前提下,尽量选转速低的液压泵;也可选用复合泵,提高溢流阀的灵敏度,增设卸荷回路等来降低噪声。由于因油区的压力冲击,液压泵也可产生流体噪声。轴向柱塞泵由于油污染吸油不畅,引起滑靴与斜盘干摩擦,发出尖厉的...