第二十七章图形的相似27.1图形的相似第2课时相似多边形1.对于四条线段a,b,c,d,如果其中两条线段的__与另外两条线段的__相等,如__,我们就说这四条线段成比例线段.2.两个边数相同的多边形,如果它们的角分别_,边__,那么这两个多边形叫做相似多边形.相似多边形__的比叫做相似比.3.相似多边形的对应角__,对应边__.比比ab=cd(ad=bc)相等成比例对应边相等成比例成比例线段1.(4分)下列各线段的长度成比例的是()A.2cm,5cm,6cm,8cmB.1cm,2cm,3cm,4cmC.3cm,6cm,7cm,9cmD.3cm,6cm,9cm,18cm2.(4分)对于线段a,b,如果a∶b=2∶3,那么下列四个选项一定正确的是()A.2a=3bB.b-a=1C.a+2b+3=23D.a+bb=523.(4分)在比例尺为1∶10000000的地图上,量得甲、乙两地的距离是30cm,则两地的实际距离是()A.30kmB.300kmC.3000kmD.30000kmDCC相似多边形的判定4.(4分)在下面的三个矩形中,相似的是()A.甲和乙B.甲和丙C.乙和丙D.甲、乙和丙5.(5分)(2014·河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对BA相似多边形的性质6.(5分)两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()A.23B.32C.49D.947.(5分)一个多边形的边长分别为2,3,4,5,6,另一个和它相似的多边形的最长边为24,则这个多边形的最短边长为()A.6B.8C.12D.108.(9分)如图,梯形ABCD与梯形A′B′C′D′相似,求未知边x,y,z的长度和∠α,∠β的度数.解:∵AB∥CD,A′B′∥C′D′,∴∠A+D∠=180°,∠B′+C′∠=180°,又A∵∠=62°,∠C′=110°,∴∠D=118°,∠B′=70°,又∵梯形ABCD与梯形A′B′C′D′相似,∴∠α=D∠=118°,∠β=B′∠=70°,∴x4=y8=9z=9.66.4,解得:x=6,y=12,z=6.AB一、选择题(每小题6分,共18分)9.如图,正五边形FGHMN与正五边形ABCDE相似,若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F10.(2014·牡丹江)若x∶y=1∶3,2y=3z,则2x+yz-y的值是()A.-5B.-103C.103D.511.如图,一般书本的纸张是原纸张多次对开得到的,矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依次类推,若各种开本的矩形都相似,则ABAD等于()A.0.618B.22C.2D.2BAB二、填空题(每小题6分,共12分)12.一个五边形的边长分别为1cm,2cm,3cm,4cm,5cm,另一个和它相似的五边形的最大边长为7cm,则后一个五边形的周长为__.13.如图,在梯形ABCD中,AD∥BC,AD=12cm,BC=27cm,点E,F分别在两腰AB,CD上,且EF∥AD.如果梯形AEFD∽梯形EBCF,那么EF=__.三、解答题(共30分)14.(8分)如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3,BC=9,AC=9,EC=6.试证明△ADE与△ABC相似.证明:DEBC∵∥,∴∠ADE=B∠,∠AED=C.∠又AC∵=9,EC=6,∴AE=3,∵AD=4,DB=8,∴AB=12,∴ADAB=DEBC=AEAC=13,∴△ADE与ABC△相似.21cm18cm15.(10分)如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM,MF为一边作矩形EMNH,矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?解:由MN∶AD=MFAB∶及MN=x得MF=2x,EM=10-2x,∴S=x(10-2x)=-2(x-52)2+252,∴当x=52时,S有最大值为252.综合运用】16.(12分)如图,矩形ABCD的长为100cm,宽为80cm,在它的内部有一个矩形EFGH(EH>EF).设AD与EH之间的距离,BC与FG之间的距离都为acm,AB与EF之间的距离,DC与HG之间的距离都为bcm.(1)当a,b满足什么关系时,两个矩形相似;(2)若b比a大1,且两个矩形相似,求矩形EFGH的面积.解:(1)当矩形ABCD与矩形EFGH相似时,有ABEF=ADEH,所以8080-2a=100100-2b,可得ab=45,所以当a,b满足关系ab=45时,矩形ABCD与矩形EFGH相似(2)由题意知b-a=1,再结合(1)中的结论,得a=4,b=5,可求EH=90cm,EF=72cm,所以矩形EFGH的面积为90×72=6480(cm2)