电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

三元一次方程组的解法第课时VIP免费

三元一次方程组的解法第课时_第1页
1/16
三元一次方程组的解法第课时_第2页
2/16
三元一次方程组的解法第课时_第3页
3/16
5.8三元一次方程组学习目标:(1)了解三元一次方程组的概念;(2)能解简单的三元一次方程组,在解的过程中进一步体会“消元”思想.学习重点:会用消元法解三元一次方程组.课件说明基本方法:代入法和加减法;实质:消元.二元一次方程组一元一次方程消元复习提问(1)二元一次方程组的概念是什么?(2)解二元一次方程组的基本方法有哪几种?它们的实质是什么?明确概念含有三个未知数,并且含未知数的项的次数为1次的方程,叫做三元一次方程含有未知数的三个一次方程叫做三元一次方程组.三个(3)辨一辨下列方程中是三元一次方程的在括号内打“√”,否则打“×”。(1)2x+3y=12-z()(2)xy-z=14()()()√√××(4)找一找下列方程组中是三元一次方程组的有;,,724232yxyxyx;,,6327352zyzxyx;,,2252124zyxzyxyx.,,7324232zyxxyyx143223如何解这个三元一次方程组呢?(1)二元一次方程组是如何求解的?(2)三元一次方程组可不可以用类似的方法求解?1225224xyzxyzxy,,.解决问题1225224.xyzxyzxy,,对于这个方程组,消哪个元比较方便?理由是什么?①②③41242522yyzyyz,.将③代入①②,得即5126522yzyz,.用的是什么消元方法?还有什么方法?解决问题1225224xyzxyzxy,,.①②③如何用加减消元法解这个方程组?③与④组成方程组44338xyxy,.解这个方程组,得82xy,.4338xy.解:①②,得④5解决问题把x=8,y=2代入①,得1228z所以z=2.因此,这个三元一次方程组的解为822xyz,,.解决问题三元一次方程组二元一次方程组一元一次方程消元消元总结提炼解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.解三元一次方程组练习巩固354xyyzzx2333215xyzxyzxyz1.下列方程组是三元一次方程组的是()3583221xyzxymxmz523xyz318xyyzzw9220abdababdAB.C.D.B2.二元一次方程组应先消去未知数,得到关于的二元一次方程组,解二元一次方程组,得,原方程组的解是.3.已知甲,乙,丙三数的和是23,甲数比乙数大1,甲数的2倍与乙数的和比丙数大20,求这三个数。(1)三元一次方程组的概念是什么?(2)如何解一个三元一次方程组?课堂小结

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

三元一次方程组的解法第课时

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部