1.分式的定义:2.分式有意义的条件:B≠0分式无意义的条件:B=03.分式值为0的条件:A=0且B≠0A>0,B>0或A<0,B<0A>0,B<0或A<0,B>0分式<0的条件:AB4.分式>0的条件:ABAB形如,其中A,B都是整式,且B中含有字母.1.下列各式(1)(2)(3)(4)(5)是分式的有个。32x32xx2x2x∏1-32x2.下列各式中x取何值时,分式有意义.(1)(2)(3)(4)X-1X+2X2-14xX-11X2-2x+313.下列分式一定有意义的是()ABCDX+1x2X+1X2+1X-1X2+11X-13Bx≠-2x≠±1x≠±1x为一切实数4.当x.y满足关系时,分式无意义.2x+y2x-y5.当x为何值时,下列分式的值为0?(1)(2)(3)(4)X-4X+1X-2X-1X-3X-3X2-1X2+2x+12x=yX=4X=1X=-3X=16.当x为何值时,分式(1)有意义(2)值为02x(x-2)5x(x+2)7.要使分式的值为正数,则x的取值范围是1-x-2X≠0且x≠-2X=2X>18.当x时,分式的值是负数.X2+1X+29.当x时,分式的值是非负数.X-7X2+110.当x时,分式的值为正.X+1X2-2x+3<-2≥7>-11.分式的基本性质:分式的分子与分母同乘以(或除以)分式的值用式子表示:(其中M为的整式)ABAXM()ABA÷M()==2.分式的符号法则:AB=B()=A()=-A()-A-B=A()=B()=-A()一个不为0的整式不变BXMB÷M不为0-A-B-BB-AB1.写出下列等式中的未知的分子或分母.(1)(2)(3)(4)a+bab=a2b()ab+b2ab2+b=a+b()a-ba+b=a2–b2()a+bab=2a2+2ab()a2+abab+1a2+b2-2ab2a2b2.下列变形正确的是()ABCDab=a2b2a-ba=a2-ba22-xX-1=X-21-x42a+b=2a+b3.填空:-a-bc-d=a+b()-x+yx+y=x-y()Cd-c-x-y4.与分式的值相等的分式是()ABCD2m-34-m4-m3-2m2m-34-m3-2m4-m3-2mm-45.下列各式正确的是()-x+y-x-y-x+y-x-y-x+y-x-y-x+y-x-y=X-yX+y=-x-yX+y=X+yX-y=X-yX+yABCDAA7.如果把分式中的x和y的值都扩大3倍,则分式的值()A扩大3倍B不变C缩小1/3D缩小1/6xx+y8.如果把分式中的x和y的值都扩大3倍,则分式的值()A扩大3倍B不变C缩小1/3D缩小1/6xyx+yBA9.若x,y的值均变为原来的1/3,则分式的值().A是原来的1/3B是原来的1/9C保持不变D不能确定3xyx2+y210.已知分式的值为5/3,若a,b的值都扩大到原来的5倍,则扩大后分式的值是3a2a+bC5/3把分母不相同的几个分式化成分母相同的分式。关键是找最简公分母:各分母所有因式的最高次幂的积.1.约分:2.通分:把分子、分母的最大公因式(数)约去。1.约分(1)(2)(3)-6x2y27xy2-2(a-b)2-8(b-a)3m2+4m+4m2-42.通分(1)(2)x6a2b与y9ab2ca-1a2+2a+1与6a2-1约分与通分的依据都是:分式的基本性质1.已知,试求的值.x2=y3=Z4x+y-zx+y+z2.已知,求的值.1x+1y=52x-3xy+2y-x+2xy-y3.已知x+=3,求x2+的值.1x1x2变:已知x2–3x+1=0,求x2+的值.1x2变:已知x+=3,求的值.1xx2x4+x2+1两个分式相乘,把分子相乘的积作为积的分子,两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。把分母相乘的积作为积的分母。bdacdcba用符号语言表达:用符号语言表达:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。bcadcdbadcba用符号语言表达:3234)1(xyyxcdbacab452)2(2223222441(3)214aaaaaa223(5)5325953xxxxx2222255(6)343mnpqmnppqmnq(7)2222444431669xxxxxxxx2222444431669xxxxxxxx解:)2)(2()2(34)4)(4()3(22xxxxxxxx)2)(4()2)(3(xxxx82622xxxx注意:乘法和除法运算时,分子或分母能分解的要分解,结果要化为最简分式。分式的加减同分母相加异分母相加ACBACABADACBDADCAADBDDCAB通分{在分式有关的运算中,一般总是先把分子、分母分解因式;注意:过程中,分子、分母一般保持分解因式的形式。aa34)1(xxxx11211)2(11211)4(2xxxx1122)5(xxx(6)计算:xyxyyxxxyx22解:xyxyyxxxyx22)()()())((22yxxyyxxxyxxyxyxxyxyxyx222220(7)当x=200时,求的值.xxxxxx13632解:xxxxxx13632)3(3)3(6)3(2xxxxxxx...