白马滩初级中学2011年至2012年第二学期学案姓名王彩红授课班级八年级时间3.26科目数学课题勾股定理(3)课型新授学习目标1、能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。2、体会数与形的密切联系,增强应用意识,提高运用勾股定理解决问题的能力。培养数形结合的数学思想,并积极参与交流,并积极发表意见。学习重点利用勾股定理在数轴上表示无理数学习难点确定以无理数为斜边的直角三角形的两条直角边长。教具电脑投影仪教学活动过程一、预习新知(阅读教材第68至69页,并完成预习内容。)1.探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?2.分析:如果能画出长为_______的线段,就能在数轴上画出表示的点。容易知道,长为的线段是两条直角边都为______的直角边的斜边。长为的线段能是直角边为正整数的直角三角形的斜边吗?利用勾股定理,可以发现,长为的线段是直角边为正整数_____、______的直角三角形的斜边。3.作法:在数轴上找到点A,使OA=_____,作直线垂直于OA,在上取点B,使AB=_____,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示的点。4.在数轴上画出表示的点?(尺规作图)二.课堂展示例1已知直角三角形的两边长分别为5和12,求第三边。例2已知:如图,等边△ABC的边长是6cm。⑴求等边△ABC的高。⑵求S△ABC。三.随堂练习1.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=。⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=。⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a=,b=。(4)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。2.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形面积。四.课堂检测1.已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是()A.4cmB.cmC.6cmD.cm2.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或333、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.五、课堂小结作业板书设计教学评价反思“路”4m3m