电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

蒙特卡洛模拟方法VIP免费

蒙特卡洛模拟方法_第1页
1/77
蒙特卡洛模拟方法_第2页
2/77
蒙特卡洛模拟方法_第3页
3/77
蒙特卡罗模拟方法报告人:杨林吴颖科目:项目风险管理任课教师:尹志军蒙特卡罗模拟方法一、蒙特卡罗方法概述二、蒙特卡罗方法模型三、蒙特卡罗方法的优缺点及其适用范围四、相关案例分析及软件操作五、问题及相关答案MonteCarlo方法的发展历史早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。从方法特征的角度来说可以一直追溯到18世纪后半叶的蒲丰(Buffon)随机投针试验,即著名的蒲丰问题。1707-17881777年,古稀之年的蒲丰在家中请来好些客人玩投针游戏(针长是线距之半),他事先没有给客人讲与π有关的事。客人们虽然不知道主人的用意,但是都参加了游戏。他们共投针2212次,其中704次相交。蒲丰说,2212/704=3.142,这就是π值。这着实让人们惊喜不已。例.蒲丰氏问题设针投到地面上的位置可以用一组参数(x,θ)来描述,x为针中心的坐标,θ为针与平行线的夹角,如图所示。任意投针,就是意味着x与θ都是任意取的,但x的范围限于[0,a],夹角θ的范围限于[0,π]。在此情况下,针与平行线相交的数学条件是针在平行线间的位置sinlx其他当,0sin,1),(lxxsNiiiNxsNs1),(1aladxddxdfxfxsPl2)()(),(sin0021NsalaPl22一些人进行了实验,其结果列于下表:实验者年份投计次数π的实验值沃尔弗(Wolf)185050003.1596斯密思(Smith)185532043.1553福克斯(Fox)189411203.1419拉查里尼(Lazzarini)190134083.141592920世纪四十年代,由于电子计算机的出现,利用电子计算机可以实现大量的随机抽样的试验,使得用随机试验方法解决实际问题才有了可能。其中作为当时的代表性工作便是在第二次世界大战期间,为解决原子弹研制工作中,裂变物质的中子随机扩散问题,美国数学家冯.诺伊曼(VonNeumann)和乌拉姆(Ulam)等提出蒙特卡罗模拟方法。由于当时工作是保密的,就给这种方法起了一个代号叫蒙特卡罗,即摩纳哥的一个赌城的名字。用赌城的名字作为随机模拟的名称,既反映了该方法的部分内涵,又易记忆,因而很快就得到人们的普遍接受。蒙特卡罗方法的基本思想蒙特卡罗方法又称计算机随机模拟方法。它是以概率统计理论为基础的一种方法。由蒲丰试验可以看出,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。这就是蒙特卡罗方法的基本思想。因此,可以通俗地说,蒙特卡罗方法是用随机试验的方法计算积分,即将所要计算的积分看作服从某种分布密度函数f(r)的随机变量g(r)的数学期望通过某种试验,得到N个观察值r1,r2,…,rN(用概率语言来说,从分布密度函数f(r)中抽取N个子样r1,r2,…,rN,),将相应的N个随机变量的值g(r1),g(r2),…,g(rN)的算术平均值作为积分的估计值(近似值)。NiiNrgNg1)(10)()(drrfrgg计算机模拟试验过程计算机模拟试验过程,就是将试验过程(如投针问题)化为数学问题,在计算机上实现。模拟程序l=1;d=2;m=0;n=10000fork=1:n;x=unifrnd(0,d/2);y=unifrnd(0,pi);ifx<0.5*1*sin(y)m=m+1elseendendp=m/npi_m=1/p①建立概率统计模型②收集模型中风险变量的数据,确定风险因数的分布函数③根据风险分析的精度要求,确定模拟次数⑥样本值⑦统计分析,估计均值,标准差NNN⑤根据随机数在各风险变量的概率分布中随机抽样,代入第一步中建立的数学模型NN个④建立对随机变量的抽样方法,产生随机数。例子某投资项目每年所得盈利额A由投资额P、劳动生产率L、和原料及能源价格Q三个因素。收集P,L,Q数据,确定分布函数模拟次数N;根据分布函数,产生随机数抽取P,L,Q一组随机数,带入模型产生A值统计分析,估计均值,标准差根据历史数据,预测未来。122AaPbLcQd122AaPbLcQd(),(),()fPfLfQNNNN个模型建立的两点说明MonteCarlo方法在求解一个问题是,总是需要根据问题的要求构造一个用于求解的概率统计模型,常见的模...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

蒙特卡洛模拟方法

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部