电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

434等腰三角形VIP免费

434等腰三角形_第1页
1/25
434等腰三角形_第2页
2/25
434等腰三角形_第3页
3/25
13.3.1等腰三角形(第一课时)基础目标:1.能利用轴对称的知识探究等腰三角形的两个性质,会证明两个性质;2.进一步体会研究几何命题的全过程:观察、实验、猜测、论证。能力目标:3.能用等腰三角形的性质证明两个角相等或两条线段相等;学习目标学习目标1.1.等腰三角形定义等腰三角形定义腰腰底边顶角底角ABC(在△(在△ABCABC中中,,ABAB=AC=AC))重温定义温故温故篇篇2.把一个图形沿着折叠,直线两旁的部分能够,这个图形就叫做轴对称图形.3.线段的垂直平分线上的点到___________的距离相等.某一条直线某一条直线互相重合互相重合线段两个端点线段两个端点温故知新温故温故篇篇我们用一张矩形纸片,通过折叠一次,沿如图所示虚线剪开,剪出一个三角形.DACB探究篇探究篇你剪出的三角形是等腰三角形吗?活动一把剪出的等腰三角形沿折痕对折,观察有哪些线段重合?又有哪些角重合呢?然后与小组同学交流。活动二重合的线段重合的角探究篇探究篇ACBAB=AC∠B=∠CBD=CD∠ADB=∠ADC∠BAD=∠CAD观察实验D活动三思考:对于大小不同、形状各异的等腰三角形,都具有上述特征吗?请拿出你准备好的任意的等腰三角形,折一折,上面的结论是否仍然成立。探究篇探究篇重合的线段重合的角探究篇探究篇ACB观察实验AB=AC∠B=∠CBD=CD∠ADB=∠ADC∠BAD=∠CAD请你根据这些相等关系猜测等腰三角形的性质,然后与同伴交流。D猜想1等腰三角形的两个底角相等;猜想2等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.大胆猜想探究篇探究篇ACBD证明猜想1等腰三角形的两个底角相等.已知:求证:△ABC中,AB=AC.∠B=∠C.推理论证ABC思考:1.要证明两个角相等常用什么方法呢?2.沿折痕对折三角形,对你有什么启发呢?3.折痕可以成为△ABC的什么线呢?思考:证明几何命题的步骤辅助线为:顶角平分线或底边上的中线或底边上的高。(请同学们自己选择其中一种作辅助线的方法,完成证明过程)证明猜想1等腰三角形的两个底角相等.∠B=∠C.求证:已知:△ABC中,AB=ACABC证法三:作底边BC上的高AF.推理论证探究篇探究篇证法一:作∠BAC的角平分线AD,交BC于点D.ABCD证法二:作底边BC上的中线AE.ABCEABCF已知:求证:△ABC中,AB=AC.∠B=∠C.作辅助线构造全三角形已知:求证:△ABC中,AB=AC.∠B=∠C.推理论证探究篇探究篇ABCD证明:如图,作∠BAC的平分线AD,在△BAD和△CAD中,AB=AC,∠BAD=∠CAD,AD=AD,∴△BAD△CAD(SAS).∴∠B=C.∠等腰三角形性质1:等腰三角形的两个底角相等。(简写成“等边对等角”)符号语言:在△ABC中, AB=AC,∴∠B=∠C().等边对等角归纳结论探究篇探究篇ACB方法指导:这个性质,实际上是在同一个三角形内证明两个角相等的证明方法。思考:怎样证明猜想2呢?猜想2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.可分解为三个结论:1.等腰三角形的顶角平分线也是底边上的中线和底边上的高;2.等腰三角形的底边上的中线也是底边上的高和顶角平分线;3.等腰三角形的底边上的高也是和顶角平分线底边上的中线。证明结论1.等腰三角形的顶角平分线是底边上的中线和底边上的高;ABCD已知:在△ABC中,AB=AC,AD是∠BAC的平分线。求证:BD=CD,ADBC⊥等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(简称“三线合一”).等腰三角形性质2DACB归纳结论探究篇探究篇(1) AB=AC,∠BAD=∠CAD,∴AD______,⊥BD=______.(2) AB=AC,BD=CD,∴AD______,⊥∠BAD=.(3) AB=AC,AD⊥BC,∴∠BAD=,BD=______.BCCDBC∠CADCD∠CAD在△ABC中,DACB探究探究篇篇等腰三角形“三线合一”的性质,用符号语言表示为:例题:如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数。反馈篇反馈篇本题小结:利用等腰三角形的性质解题时,一般要与三角形内角和定理相配合。反馈篇反馈篇1.如图2,△ABC是等腰直角三角形,AD是BC边上的高,说出∠B,∠C,BAD,DAC∠∠的度数,并指出图中所有相等的线段。目标检测2.已知等腰三角形的一个内角为50º,则它的另外两个内角的度数分别为______________.反馈篇反馈篇目标检测注意分类讨论呦!50º,80º或65º,65º反馈篇反馈篇综合提...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

434等腰三角形

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部