等差数列教材:等差数列(二)目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。过程:一、复习:等差数列的定义,通项公式二、例一在等差数列na中,d为公差,若Nqpnm,,,且qpnm求证:1qpnmaaaa2dqpaaqp)(证明:1设首项为1a,则dqpadqadpaaadnmadnadmaaaqpnm)2(2)1()1()2(2)1()1(111111∵qpnm∴qpnmaaaa2∵dpaap)1(1dpadqpdqadqpaq)1()()1()(11∴dqpaaqp)(注意:由此可以证明一个定理:设成等差数列,则与首末两项距离相等的两项和等于首末两项的和,即:23121nnnaaaaaa同样:若pnm2则pnmaaa2例二在等差数列na中,1若aa5ba10求15a解:155102aaa即152aab∴aba2152若maa83求65aa解:65aa=maa833若65a158a求14a1解:daa)58(58即d3615∴3d从而33396)514(514daa4若30521aaa801076aaa求151211aaa解:∵6+6=11+17+7=12+2……∴11162aaa12272aaa……从而)(151211aaa+)(521aaa2)(1076aaa∴151211aaa=2)(1076aaa)(521aaa=2×8030=130三、判断一个数列是否成等差数列的常用方法1.定义法:即证明)(1常数daann已知数列na的前n项和nnSn232,求证数列na成等差数列,并求其首项、公差、通项公式。解:12311Sa当2n时56)]1(2)1(3[23221nnnnnSSannn1n时亦满足∴56nan首项11a)(6]5)1(6[561常数nnaann∴na成等差数列且公差为62.中项法:即利用中项公式,若cab2则cba,,成等差数列。已知a1,b1,c1成等差数列,求证acb,bac,cba也成AP。2证明:∵a1,b1,c1成AP∴cab112化简得:)(2cabacaccaacaccacabacabacbccbaacb2222222)(=bcacabcaacca22)()()(22∴acb,bac,cba也成等差数列。3.通项公式法:利用等差数列得通项公式是关于n的一次函数这一性质。例五设数列na其前n项和322nnSn,问这个数列成AP吗?解:1n时211Sa2n时321nSSannn∵321naan不满足∴322nan21nn∴数列na不成AP但从第2项起成等差数列。四、小结:略五、作业:3