电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第三章 三角恒等变换 3.2.2 两角和与差的正、余弦函数教案 北师大版必修4-北师大版高一必修4数学教案VIP免费

高中数学 第三章 三角恒等变换 3.2.2 两角和与差的正、余弦函数教案 北师大版必修4-北师大版高一必修4数学教案_第1页
1/8
高中数学 第三章 三角恒等变换 3.2.2 两角和与差的正、余弦函数教案 北师大版必修4-北师大版高一必修4数学教案_第2页
2/8
高中数学 第三章 三角恒等变换 3.2.2 两角和与差的正、余弦函数教案 北师大版必修4-北师大版高一必修4数学教案_第3页
3/8
1.2.2两角和与差的正、余弦函数整体设计教学分析本节课是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦公式.以两角差的余弦为基础,推导后面其他公式的过程是一个逻辑推理的过程,也是一个认识三角函数式的特征,体会三角恒等变形特点的过程,我们不仅要重视对推出的公式的理解、应用,而且还应重视推导过程的教育功能.在这些公式的推导中,教科书把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点.例如:比较cos(α-β)与cos(α+β),它们都是角的余弦,只是角的形式不同,但不同角的形式从运算或换元的角度看都有内在联系,如α+β=α-(-β)的关系.又如:比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式即可建立角的正弦与余弦的联系.通过对“两角和与差的正弦、余弦公式”的推导,揭示了两角和与差的三角函数与这两角的三角函数的运算规律,使学生加深了对数学公式的推导、证明方法的理解.因此本节内容对培养学生的运算能力\,逻辑思维能力\,创新能力及发现问题和解决问题的能力都有着十分重要的意义.本节的公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领悟它们的这种联系,加深对公式的理解和记忆.本节教案设计的几个例子较课本例子要丰满广阔,主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯.教学中应当有意识地对学生的思维习惯进行引导,例如在面对具体问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简洁性等,这些都是培养学生三角恒等变形能力所不能忽视的.三维目标1.通过让学生探索、发现并推导两角和与差的正、余弦公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,并通过公式的具体运用,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题\,解决问题的能力.2.通过本节公式的推导,不仅使学生掌握寻找数学规律的方法,提高学生的观察\,分析问题的能力,培养学生的应用意识,提高学生的数学素质.而且要在推导公式的逻辑结构熏陶下,升华学生的理性思维,以数学自身的美去吸引学生,让学生更有效地抓住问题的本质,并从中获得研究方法的有益启示.重点难点教学重点:两角和与差的正弦、余弦公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.课时安排1课时教学过程导入新课思路1.(情境导入)教师先让学生回顾上节课所推导的两角差的余弦公式,并让一学生把公式默写在黑板上,注意有意识地让学生写整齐.然后教师引导学生观察思考:公式cos(α-β)中α、β既然是任意角,你能把它转化为cos(α+β)、sin(α-β)吗?由此展开一系列公式的推导及应用.1思路2.(问题引入)教师提出问题,先让学生计算以下几个题目:若sinα=55,α∈(0,2),cosβ=1010,β∈(0,2),求cos(α-β),cos(α+β)的值.这样既复习回顾了上节所学公式,又为本节新课作铺垫.学生利用公式Cα-β很容易求得cos(α-β),但是如果求cos(α+β)的值却有困难了,需要想法转化为公式Cα-β的形式来求,怎样转化呢?从而引出新课题,并由此展开联想,推出其他公式.推进新课新知探究提出问题①回忆两角差的余弦公式及推导过程,其他两角和与差的公式也用此法吗?你是否考虑过:在公式Cα-β中,因为角β是任意角,所以将角α-β中β换成角-β后用诱导公式?②观察Cα+β的结构有何特征,并与公式Cα-β进行比较,你有哪些发现?③你能否利用诱导公式从余弦的两角和公式推导sin(α+β)=?sin(α-β)=?并观察思考公式的结构特征与和差的余弦公式有什么不同?活动:先让学生默写两角差的余弦公式,教师适时地打开课件,点拨学生思考公式中的α,β既然可以是任意角,是怎样任意的?你会有些什么样的奇妙想法吗?并鼓励学生大胆猜想,引导他们比较cos(α-β)与cos(α+β)中角的内在联系,学生有的会发现α-β中的角β可以变为角-β,所以α-(-β)=α+β〔也有的会根据加减运算关系直接把和角α+β...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第三章 三角恒等变换 3.2.2 两角和与差的正、余弦函数教案 北师大版必修4-北师大版高一必修4数学教案

您可能关注的文档

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部