1.2.2组合(第三课时)教学目标:1、进一步巩固组合、组合数的概念及其性质;2、能够解决一些组合应用问题教学重点:解决一些组合应用问题教学过程一、复习引入:11奎屯王新敞新疆组合的概念:一般地,从n个不同元素中取出mmn个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合奎屯王新敞新疆说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同奎屯王新敞新疆2.组合数的概念:从n个不同元素中取出mmn个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号mnC表示.3.组合数公式的推导:(1)一般地,求从n个不同元素中取出m个元素的排列数mnA,可以分如下两步:①先求从n个不同元素中取出m个元素的组合数mnC;②求每一个组合中m个元素全排列数mmA,根据分步计数原理得:mnA=mnCmmA.(2)组合数的公式:(1)(2)(1)!mmnnmmAnnnnmCAm或)!(!!mnmnCmn),,(nmNmn且奎屯王新敞新疆4.组合数的性质1:mnnmnCC.5.组合数的性质2:mnC1=mnC+1mnC.二、讲解新课:例子1.(1)把n+1个不同小球全部放到n个有编号的小盒中去,每小盒至少有1个小球,共有多少种放法?(2)把n+1相同的小球,全部放到n个有编号的小盒中去,每盒至少有1个小球,又有多少种放法?(3)把n+1个不同小球,全部放到n个有编号的小盒中去,如果每小盒放进的球数不限,问有多少种放法?2.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,1则一共有多少种不同的取法?解:分为三类:1奇4偶有4516CC;3奇2偶有2536CC;5奇1偶有56C,∴一共有4516CC+2536CC+23656C.3.现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有2324CC;②让两项工作都能担任的青年从事德语翻译工作,有1334CC;③让两项工作都能担任的青年不从事任何工作,有2334CC,∴一共有2324CC+1334CC+2334CC=42种方法.4.甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?解法一:(排除法)422131424152426CCCCCC.解法二:分为两类:一类为甲不值周一,也不值周六,有2324CC;另一类为甲不值周一,但值周六,有2414CC,∴一共有2414CC+2324CC=42种方法.5.6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?解:第一步:从6本不同的书中任取2本“捆绑”在一起看成一个元素有26C种方法;第二步:将5个“不同元素(书)”分给5个人有55A种方法.根据分步计数原理,一共有26C55A=1800种方法奎屯王新敞新疆6.从6双不同手套中,任取4只,(1)恰有1双配对的取法是多少?(2)没有1双配对的取法是多少?(3)至少有1双配对的取法是多少?课堂小节:本节课学习了组合数的应用课堂练习:课后作业:2