电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 排列、组合和概率课时复习教案06VIP免费

高中数学 排列、组合和概率课时复习教案06_第1页
1/3
高中数学 排列、组合和概率课时复习教案06_第2页
2/3
高中数学 排列、组合和概率课时复习教案06_第3页
3/3
排列、组合和概率组合⑵课题:组合的简单应用及组合数的两个性质目的:深刻理解排列与组合的区别和联系,熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的应用问题.过程:一、复习回顾:1.复习排列和组合的有关内容:定义特点相同××公式排列组合强调:排列——次序性;组合——无序性.2.练习一:练习1:求证:.(本式也可变形为:)练习2:计算:①和;②与;③答案:①120,120②20,20③792(此练习的目的为下面学习组合数的两个性质打好基础.)3.练习二:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条?⑵平面内有10个点,以其中每2个点为端点的有向线段共有多少条?答案:⑴(组合问题)⑵(排列问题)二、新授:1.组合数的性质1:.理解:一般地,从n个不同元素中取出m个元素后,剩下nm个元素.因为从n个不同元素中取出m个元素的每一个组合,与剩下的nm个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出nm个元素的组合数,即:.在这里,我们主要体现:“取法”与“剩法”是“一一对应”的思想.证明:∵又∴注:1我们规定2等式特点:等式两边下标同,上标之和等于下标.3此性质作用:当时,计算可变为计算,能够使运算简化.例如:===2002.14或2.示例一:(课本101例4)一个口袋内装有大小相同的7个白球和1个黑球.⑴从口袋内取出3个球,共有多少种取法?⑵从口袋内取出3个球,使其中含有1个黑球,有多少种取法?⑶从口袋内取出3个球,使其中不含黑球,有多少种取法?解:⑴⑵⑶引导学生发现:.为什么呢?我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.一般地,从这n+1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据分类计数原理,可以得到组合数的另一个性质.在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.3.组合数的性质2:=+.证明:∴=+.注:1公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.2此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.4.示例二:⑴计算:2⑵求证:=++⑶解方程:⑷解方程:⑸计算:和推广:5.组合数性质的简单应用:证明下列等式成立:⑴(讲解)⑵(练习)⑶三、小结:1.组合数的两个性质;2.从特殊到一般的归纳思想.3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 排列、组合和概率课时复习教案06

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部