实数与向量的积教材:实数与向量的积目的:要求学生掌握实数与向量的积的定义、运算律,理解向量共线的充要条件。过程:一、复习:向量的加法、减法的定义、运算法则。二、1.引入新课:已知非零向量作出++和()+()+()==++=3==()+()+()=3讨论:13与方向相同且|3|=3||23与方向相反且|3|=3||2.从而提出课题:实数与向量的积实数λ与向量的积,记作:λ定义:实数λ与向量的积是一个向量,记作:λ1|λ|=|λ|||2λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=3.运算定律:结合律:λ(μ)=(λμ)①第一分配律:(λ+μ)=λ+μ②第二分配律:λ(+)=λ+λ③结合律证明:如果λ=0,μ=0,=至少有一个成立,则①式成立如果λ0,μ0,有:|λ(μ)|=|λ||μ|=|λ||μ||||(λμ)|=|λμ|||=|λ||μ|||∴|λ(μ)|=|(λμ)|如果λ、μ同号,则①式两端向量的方向都与同向;如果λ、μ异号,则①式两端向量的方向都与反向。从而λ(μ)=(λμ)第一分配律证明:如果λ=0,μ=0,=至少有一个成立,则②式显然成立如果λ0,μ0,当λ、μ同号时,则λ和μ同向,∴|(λ+μ)|=|λ+μ|||=(|λ|+|μ|)|||λ+μ|=|λ|+|μ|=|λ|||+|μ|||=(|λ|+|μ|)||∵λ、μ同号∴②两边向量方向都与同向即:|(λ+μ)|=|λ+μ|当λ、μ异号,当λ>μ时②两边向量的方向都与λ同向用心爱心专心115号编辑aaaOABCaaaaNMQP当λ<μ时②两边向量的方向都与μ同向还可证:|(λ+μ)|=|λ+μ|∴②式成立第二分配律证明:如果=,=中至少有一个成立,或λ=0,λ=1则③式显然成立当,且λ0,λ1时1当λ>0且λ1时在平面内任取一点O,作λλ则+λ+λ由作法知:∥有OAB=OA1B1||=λ||∴λ∴△OAB∽△OA1B1∴λAOB=A1OB1因此,O,B,B1在同一直线上,||=|λ|与λ方向也相同λ(+)=λ+λ当λ<0时可类似证明:λ(+)=λ+λ∴③式成立4.例一(见P104)略三、向量共线的充要条件(向量共线定理)1.若有向量()、,实数λ,使=λ则由实数与向量积的定义知:与为共线向量若与共线()且||:||=μ,则当与同向时=μ当与反向时=μ从而得:向量与非零向量共线的充要条件是:有且只有一个非零实数λ使=λ2.例二(P104-105略)三、小结:四、作业:课本P105练习P107-108习题5.31、2用心爱心专心115号编辑OABB1A1AOBB1A1