电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第1章 立体几何初步章末复习课讲义 苏教版必修2-苏教版高一必修2数学教案VIP免费

高中数学 第1章 立体几何初步章末复习课讲义 苏教版必修2-苏教版高一必修2数学教案_第1页
1/8
高中数学 第1章 立体几何初步章末复习课讲义 苏教版必修2-苏教版高一必修2数学教案_第2页
2/8
高中数学 第1章 立体几何初步章末复习课讲义 苏教版必修2-苏教版高一必修2数学教案_第3页
3/8
第1章立体几何初步空间中的平行关系【例1】如图,E,F,G,H分别是正方体ABCDA1B1C1D1的棱BC,CC1,C1D1,AA1的中点.求证:(1)GE∥平面BDD1B1;(2)平面BDF∥平面B1D1H.思路探究:(1)取B1D1的中点O,证明四边形BEGO是平行四边形.(2)证B1D1∥平面BDF,HD1∥平面BDF.[证明](1)取B1D1的中点O,连结GO,OB,易证OGB1C1,BEB1C1,∴OGBE,四边形BEGO为平行四边形,∴OB∥GE. OB平面BDD1B1,GE平面BDD1B1,∴GE∥平面BDD1B1.(2)由正方体性质得B1D1∥BD, B1D1平面BDF,BD平面BDF,∴B1D1∥平面BDF.连结HB,D1F,易证HBFD1是平行四边形,得HD1∥BF. HD1平面BDF,BF平面BDF,∴HD1∥平面BDF. B1D1∩HD1=D1,∴平面BDF∥平面B1D1H.1.判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(aα,bα,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,aα⇒a∥β);(4)利用面面平行的性质(α∥β,aβ,a∥α⇒a∥β).2.证明面面平行的方法:(1)利用面面平行的定义;(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”“线面平行”“面面平行”的相互转化.1.如图,AB是圆O的直径,C是圆O上的点,P为平面ABC外一点.设Q为PA的中点,G为△AOC的重心.求证:QG∥平面PBC.[证明]如图,连接OG并延长,交AC于点M,连接QM,QO,OM.由G为△AOC的重心,得M为AC的中点.由Q为PA的中点,得QM∥PC.又O为AB的中点,所以OM∥BC.因为QM∩MO=M,QM平面QMO,MO平面QMO,BC∩PC=C,BC平面PBC,PC平面PBC,所以平面QMO∥平面PBC.又QG平面QMO,所以QG∥平面PBC.空间中的垂直关系【例2】如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点.求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.思路探究:取EC中点F,CA中点N,连结DF,MN,BN.(1)证△DFE≌△ABD,(2)证BN⊥平面ECA,(3)证DM⊥平面ECA.[证明](1)如图所示,取EC的中点F,连结DF,易知DF∥BC, EC⊥BC,∴DF⊥EC.在Rt△DEF和Rt△DBA中, EF=EC=BD,FD=BC=AB,∴Rt△DFE≌Rt△ABD,故DE=DA.(2)取CA的中点N,连结MN,BN,则MNEC,∴MN∥BD,即N点在平面BDM内. EC⊥平面ABC,∴EC⊥BN.又CA⊥BN,∴BN⊥平面ECA. BN在平面MNBD内,∴平面MNBD⊥平面ECA,即平面BDM⊥平面ECA.(3) DM∥BN,BN⊥平面ECA,∴DM⊥平面ECA.又DM平面DEA,∴平面DEA⊥平面ECA.空间垂直关系的判定方法(1)判定线线垂直的方法①计算所成的角为90°(包括平面角和异面直线所成的角);②线面垂直的性质(若a⊥α,bα,则a⊥b).(2)判定线面垂直的方法①线面垂直的定义(一般不易验证任意性);②线面垂直的判定定理(a⊥m,a⊥n,mα,nα,m∩n=A⇒a⊥α);③平行线垂直平面的传递性质(a∥b,b⊥α⇒a⊥α);④面面垂直的性质定理(α⊥β,α∩β=l,aβ,a⊥l⇒a⊥α);⑤面面平行的性质(a⊥α,α∥β⇒a⊥β);⑥面面垂直的性质(α∩β=l,α⊥γ,β⊥γ⇒l⊥γ).(3)面面垂直的判定方法①根据定义(作两平面构成二面角的平面角,计算其为90°);②面面垂直的判定定理(a⊥β,aα⇒α⊥β).2.如图,四棱锥PABCD的底面为平行四边形,PD⊥平面ABCD,M为PC的中点.(1)求证:AP∥平面MBD;(2)若AD⊥PB,求证:BD⊥平面PAD.[证明](1)如图,连结AC交BD于点O,连结OM.因为底面ABCD是平行四边形,所以点O为AC的中点.又M为PC的中点,所以OM∥PA.因为OM平面MBD,AP平面MBD,所以AP∥平面MBD.(2)因为PD⊥平面ABCD,AD平面ABCD,所以PD⊥AD.因为AD⊥PB,PD∩PB=P,PD平面PBD,PB平面PBD,所以AD⊥平面PBD.因为BD平面PBD,所以AD⊥BD.因为PD⊥平面ABCD,BD平面ABCD,所以PD⊥BD.又因为BD⊥AD,AD∩PD=D,AD平面PAD,PD平面PAD,所以BD⊥平面PAD.空间几何体的体积及表面积【例3】如图,四棱锥PABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求四...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第1章 立体几何初步章末复习课讲义 苏教版必修2-苏教版高一必修2数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部