4-1.2.1任意角的三角函数(一)教学目的:知识目标:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。德育目标:(1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。公式一是本小节的另一个重点。教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.教学过程:一、复习引入:初中锐角的三角函数是如何定义的?在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为,,abasinAcosAtanAccb.角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。二、讲解新课:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(,)xy,它与原点的距离为2222(||||0)rrxyxy,那么(1)比值yr叫做α的正弦,记作sin,即sinyr;(2)比值xr叫做α的余弦,记作cos,即cosxr;(3)比值yx叫做α的正切,记作tan,即tanyx;(4)比值xy叫做α的余切,记作cot,即cotxy;说明:①α的始边与x轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)Pxy在α的终边上的位置的改变而改变大小;③当()2kkZ时,α的终边在y轴上,终边上任意一点的横坐标x都等于0,用心爱心专心所以tanyx无意义;同理当()kkZ时,yxcot无意义;④除以上两种情况外,对于确定的值α,比值yr、xr、yx、xy分别是一个确定的实数,正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。2.三角函数的定义域、值域注意:(1)在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合.(2)α是任意角,射线OP是角α的终边,α的各三角函数值(或是否有意义)与ox转了几圈,按什么方向旋转到OP的位置无关.(3)sin是个整体符号,不能认为是“sin”与“α”的积.其余五个符号也是这样.(4)任意角的三角函数的定义与锐角三角函数的定义的联系与区别:锐角三角函数是任意角三角函数的一种特例,它们的基础共建立于相似(直角)三角形的性质,“r”同为正值.所不同的是,锐角三角函数是以边的比来定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义.实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程.(5)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆.3.例题分析例1.求下列各角的四个三角函数值:(通过本例总结特殊角的三角函数值)(1)0;(2);(3)32.解:(1)因为当0时,xr,0y,所以sin00,01cos,tan00,cot0不存在。(2)因为当时,xr,0y,所以sin0,cos1,tan0,cot不存在,(3)因为当32时,0x,yr,所以3sin12,3cos02,3tan2不存在,3cot02,例2.已知角α的终边经过点(2,3)P,求α的四个函数值。解:因为2,3xy,所以222(3)13r,于是用心爱心专心函数定义域值域sinyR[1,1]cosyR[1,1]tany{|,}2kkZR3313sin1313yr...