电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第四章 决策中的收益损失与效用VIP免费

第四章 决策中的收益损失与效用_第1页
1/64
第四章 决策中的收益损失与效用_第2页
2/64
第四章 决策中的收益损失与效用_第3页
3/64
1第四章决策中的收益、损失与效用§4.1决策问题的三要素§4.2决策准则§4.3先验期望准则§4.4损失函数§4.5常用损失函数§4.6效用函数2§4.1决策问题的三要素决策就是对一件事要作决定.它与推断的差别在于是否涉及后果.统计学家在作推断时是按统计理论进行的,很少考虑结论在使用后的损失.可决策者在使用推断结果时必需与得失联系在一起,能带来利润的就会用,使他遭受损失的就不会被采用,度量得失的尺度就是损失函数.它是著名的统计学家A.Wald(1902-1950)在40年代引入的一个概念.从实际归纳出损失函数是决策的关键.贝叶斯决策:把损失函数加入贝叶斯推断就形成贝叶斯决策论,损失函数被称为贝叶斯统计中的第四种信息.一、决策的基本概念3例1设甲乙二人进行一种游戏,甲手中有三张牌,分别标以.乙手中也有三张牌,分别标以.游戏的规则是双方各自独立地出牌,按下表计算甲的得分与乙的得分.321,,321,,aaa甲的得分矩阵(乙的失分矩阵)1a2a3a1233-2014-3-4-12这是一个典型的双人博弈(赌博)问题.不少实际问题可归结为双人博弈问题.把上例中的乙方改为自然或社会,就形成人与自然(或社会)的博弈问题.4例2某农作物有两个品种:产量高但抗旱能力弱的品种和抗旱能力强但产量低的品种.在明年雨量不知的情况下,农民应选播哪个品种可使每亩平均收益最大?这是人与自然界的博弈.以明年600mm雨量为界来区分雨量充足和雨量不充足.写出收益矩阵(单位:元)1a2a121a2a121000200-2004005例3一位投资者有一笔资金要投资.有以下几个投资供他选择::购买股票,根据市场情况,可净赚5000元,但也可能亏损10000元;:存入银行,不管市场情况如何总可净赚1000元.1a2a这位投资者在与金融市场博弈.未来的金融市场也有二种情况:看涨与看跌.可写出投资者的收益矩阵121a2a1250001000-100001000投资者将依据此收益矩阵决定他的资金投向何方.这种人与自然(或社会)的博弈问题称为决策问题.6二、决策问题的三要素1.状态集,其中每个元素表示自然界(或社会)可能出现的一种状态,所有可能状态的全体组成状态集.(如例2中的两种状态:雨水充足和雨水不充足)}{2.行动集,其中a表示人对自然界可能采取的一个行动.注意:一般行动集有两个以上的行动供选择.若有两个行动无论对自然界的哪一个状态出现,总比收益高,则就没有存在的必要,可把它从行动集中去掉,使留在行动集中的行动总有可取之处.}{a1a2a2a73.收益函数。函数值表示当自然界处于状态,而人们选取行动时所得到的收益大小。),(aQijjiQaQ),(ija收益函数的值可正可负,其正表示赢利,负表示亏损,单位常用货币单位。收益函数的建立不是件容易的事,要对所研究的问题有全面的了解才能建立起来(P125例4)。收益矩阵nmnnmmQQQQQQQQQQ2122221112118§4.2决策准则一、行动的容许性二、决策准则1.乐观准则2.悲观准则3.折中准则9一、行动的容许性定义:在给定的决策问题中,A中的行动a1称为是容许的。假如在A中不存在满足如下两个条件的行动a2,1.对所有的θ∈Θ,有Q(θ,a2)≥Q(θ,a1)2.至少有一个θ,可使上式不等式严格成立。假如这样的a2存在的话,则称a1是非容许的;假如二个行动a1和a2的收益函数在Θ上处处相等,则称行动a1与a2是相等的。10两点说明:1.一般情况下,行动集中只存在容许行动。2.上面的讨论是对收益函数而言的,但我们还可以对支付函数(或亏损函数、成本函数)进行讨论,此时需要支付函数(或亏损函数、成本函数)越少越好。例5(P126)1112二、决策准则1.乐观准则(1)定义:乐观准则也称“好中求好”决策准则,或称“最大最大”决策准则。这种决策准则就是充分考虑可能出现的最大利益,在各最大利益中选取最大者,将其对应的方案作为最优方案。这种决策准则的客观基础就是所谓的天时、地利和人和,决策者感到前途乐观,有信心取得每一决策方案的最佳结果。13(2)乐观准则决策方法的一般步骤:①确定各种可行方案;②确定决策问题将面临的各种自然状态;③将各种方案在各种自然状态下的收益值列于决策矩阵表中(表4-1);④求每一方案在各自状态下的最大收益值,将其填写在决策...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第四章 决策中的收益损失与效用

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部