基本信息年级初中二年级学科数学教学方法演示法教师瞿朝文单位兰州市第九十二中学课题名称初中二年级数学上册第五章位置的确定第三课时教案学情与教材分析学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.《一次函数图象的应用》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》的第五节。本节内容安排了2个课时完成.第一课时让学生利用一次函数的图象解决一些简单的实际问题,本节课为第2课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础.教学目标【新知预习】1.甲、乙两人从同一地点出发,甲往东走了8km,乙往南走了6km后甲、乙两人相距_____km.2.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.3.一个三角形的三边的比为5:12:13,它的周长为60cm,则它的面积是________.4.以下列三个数为边长的三角形能组成直角三角形的个数是()①6,7,8;②8,15,17;③7,24,25;④12,35,37.A.1B.2C.3D.45.下列命题①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3、4,那么第三边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1.其中正确的是()A、①②B、①③C、①④D、②④【导学过程】一、情境创设欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?二、探索活动问题1.如图,长为10m的梯子AB斜靠在墙上,梯子的顶端距地面的垂直距离为8m.(1)求梯子的底部距离墙角的水平距离BC;(2)如果梯子的顶端下滑1m,那么它的底端那么它的底端是否也滑动1m?(3)如果梯子的顶端下滑2m,那么梯子的底端滑动多少米?从上面所获的信息中,你对梯子下滑的变化过程有进一步的思考吗?有人说,在滑动过程中,梯子的底端滑动的距离总比顶端下滑的距离大,你赞同吗?问题2.如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处.大树在折断之前高多少?问题3.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里水深三、例题讲解:例1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?例2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?四、课时小结:1.在运用勾股定理及其逆定理解决实际问题中,感受“转化”思想,把复杂问题转化为简单问题,把立体图形转化为________,把解斜三角形问题转化为________问题;2.在运用勾股定理及其逆定理解决实际问题的过程中,感受数学的“建模”思想,把实际问题看成一个_________问题.教学重点与难点知识与技能目标:进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;过程与方法目标:在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.情感与态度目标:在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.2.教学重点一次函数图象的应用3.教学难点从函数图象中正确读取信息教学过程与方法教学过程:本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置.第一环节:情境引入内容:一农民带上若...