沛县中学高三一轮数学教案1081椭圆与双曲线一、基本训练1.(2003京春文9,理5)在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)的曲线大致是()2.(2003京春理,7)椭圆(为参数)的焦点坐标为()A.(0,0),(0,-8)B.(0,0),(-8,0)C.(0,0),(0,8)D.(0,0),(8,0)3.(2002京皖春,3)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点.如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A.圆B.椭圆C.双曲线的一支D.抛物线4(2003京春,16)如图8—1,F1、F2分别为椭圆=1的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是_____.5(2003上海春,4)直线y=x-1被抛物线y2=4x截得线段的中点坐标是_____.6(2002上海春,2)若椭圆的两个焦点坐标为F1(-1,0),F2(5,0),长轴的长为10,则椭圆的方程为.二、例题分析例1(2002北京,21)已知O(0,0),B(1,0),C(b,c)是△OBC的三个顶点.如图8—3.(Ⅰ)写出△OBC的重心G,外心F,垂心H的坐标,并证明G、F、H三点共线;(Ⅱ)当直线FH与OB平行时,求顶点C的轨迹.例2.(2002江苏,20)设A、B是双曲线x2=1上的两点,点N(1,2)是线段AB的中点.(Ⅰ)求直线AB的方程;(Ⅱ)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆,为什么?例3(2002上海,18)已知点A(,0)和B(,0),动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线y=x-2交于D、E两点,求线段DE的223图8—1图8—3沛县中学高三一轮数学教案长.例4(2003上海春,21)设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点.(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.三、作业同步练习1081椭圆与双曲线224