百度文库,精选习题试题习题,尽在百度一、填空题1.三边长均为整数,且最大边长为11的三角形的个数为________.解析:设另两边长分别为x、y,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x=1,2,3,⋯,11,可有11个三角形;当y取10时,x=2,3,⋯,10,可有9个三角形;⋯⋯;当y取6时,x只能取6,只有1个三角形.∴所求三角形的个数为11+9+7+5+3+1=36.答案:362.将1,2,3,4,5,6,7,8,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法种数为________.34解析:如图所示,根据题意,1,2,9三个数字的位置是确定的,余下的数中,5只能在a,c位置,8只能在b,d位置,依(a,b,c,d)顺序,具体有(5,8,6,7),(5,6,7,8),(5,7,6,8),(6,7,5,8),(6,8,5,7),(7,8,5,6),合计6种.12a34bcd9答案:6百度文库,精选习题试题习题,尽在百度3.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为________.解析:可依次种A、B、C、D四块,当C与A种同一种花时,有4×3×1×3=36(种)种法;当C与A所种花不同时,有4×3×2×2=48(种)种法,由分类计数原理,不同的种法总数为36+48=84.答案:844.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中任取两个不同的数作为A、B的值,则可表示________条不同的直线.解析:分成三类:A=0,B≠0;A≠0,B=0和A≠0,B≠0,前两类各表示1条直线;第三类先取A有5种取法,再取B有4种取法,故有5×4=20(种).所以可以表示22条不同的直线.答案:225.如图,某电子元件,是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有________种.解析:解法一当线路不通时焊点脱落的可能情况共有2×2×2×2-1=15(种).解法二恰有i个焊点脱落的可能情况为Ci4(i=1,2,3,4)种,由分类计数原理,当电路不通时焊点脱落的可能情况共C14+C24+C34+C44=15(种).答案:156.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.答案:45547.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg百度文库,精选习题试题习题,尽在百度a-lgb的不同值的个数是________.解析:由于lga-lgb=lgab(a>0,b>0),从1,3,5,7,9中任取两个作为ab有A25=20种,又13与39相同,31与93相同,∴lga-lgb的不同值的个数有A25-2=20-2=18.答案:188.某次活动中,有30人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为________(用数字作答).解析:其中最先选出的一个人有30种方法,此时不能再从这个人所在的行和列上选人,还剩一个5行4列的队形,故选第二个人有20种方法,此时不能再从该人所在的行和列上选人,还剩一个4行3列的队形,此时第三个人的选法有12种,根据分步计数原理,总的选法种数是30×20×12=7200.答案:72009.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是________.解析:分两类:第一类,第一象限内的点,有2×2=4(个);第二类,第二象限内的点,有1×2=2(个).共4+2=6(个).答案:6二、解答题10.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?解析:(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).百度文库,精选习题试题习题,尽在百度(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f...