电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第十二章 复数、算法、推理与证明 第4讲 直接证明与间接证明教案 文 新人教A版-新人教A版高三全册数学教案VIP免费

高考数学一轮复习 第十二章 复数、算法、推理与证明 第4讲 直接证明与间接证明教案 文 新人教A版-新人教A版高三全册数学教案_第1页
1/11
高考数学一轮复习 第十二章 复数、算法、推理与证明 第4讲 直接证明与间接证明教案 文 新人教A版-新人教A版高三全册数学教案_第2页
2/11
高考数学一轮复习 第十二章 复数、算法、推理与证明 第4讲 直接证明与间接证明教案 文 新人教A版-新人教A版高三全册数学教案_第3页
3/11
第4讲直接证明与间接证明一、知识梳理1.直接证明直接证明中最基本的两种证明方法是综合法和分析法.(1)综合法:一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.综合法又称为:由因导果法(顺推证法).(2)分析法:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等),这种证明方法叫做分析法.分析法又称为:执果索因法(逆推证法).2.间接证明反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.常用结论1.分析法是执果索因,实际上是寻找使结论成立的充分条件;综合法是由因导果,就是寻找已知的必要条件.2.用反证法证题时,首先否定结论,否定结论就是找出结论反面的情况,然后推出矛盾,矛盾可以与已知、公理、定理、事实或者假设等相矛盾.二、习题改编1.(选修12P42练习T1改编)对于任意角θ,化简cos4θ-sin4θ=()A.2sinθB.2cosθC.sin2θD.cos2θ解析:选D.因为cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ,故选D.2.(选修12P42练习T2改编)设m=1+,n=2,则m与n的大小关系是()A.m>nB.m≥nC.m<nD.m≤n解析:选C.法一:m2-n2=(1+)2-(2)2=4+2-8=2-4=-<0,又m>0,n>0.所以m<n,故选C.法二:假设m≥n,即1+≥2.则有(1+)2≥(2)2,即4+2≥8,即2≥4,即≥2,即3≥4,显然错误,所以m<n,故选C.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)反证法是指将结论和条件同时否定,推出矛盾.()(4)用反证法证明时,推出的矛盾不能与假设矛盾.()(5)常常用分析法寻找解题的思路与方法,用综合法展现解决问题的过程.()答案:(1)√(2)×(3)×(4)×(5)√二、易错纠偏(1)“至少”否定出错;(2)应用分析法寻找的条件不充分.1.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设.答案:三角形三个内角都大于60°2.若用分析法证明“设a>b>c且a+b+c=0,求证0;②a-c>0;③(a-b)(a-c)>0;④(a-b)(a-c)<0.解析:由a>b>c且a+b+c=0,可得b=-a-c,a>0,c<0,要证0,即证,a(a-c)+(a+c)(a-c)>0,即证(a-c)(a-b)>0.答案:③综合法(师生共研)(2019·高考江苏卷)如图,在直三棱柱ABCA1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【证明】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABCA1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABCA1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.综合法证题的思路与方法(一题多解)在△ABC中,设a,b,c分别是内角A,B,C所对的边,且直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,求证:△ABC是直角三角形.证明:法一:由两直线平行可知bcosB-acosA=0,由正弦定理可知sinBcosB-sinAcosA=0,即sin2B-sin2A=0,故2A=2B或2A+2B=π,即A=B或A+B=.若A=B,则a=b,cosA=cosB,两直线重合,不符合题意,故A+B=,即△ABC是直角三角形.法二:由两直线平行可知bcosB-acosA=0,由余弦定理,得a·=b·,所以a2(b2+c2-a2)=b2(a2+c2-b2),所以c2(a2-b2)=(a2+b2)(a2-b2),所以(a2-b2)(a2+b2-c2)=0,所以a=b或a2+b2=c2.若a=b,则两直线重合,不符合题意,故a2+b2=c2,即△ABC是直角三角形.分析法(师生共研)△ABC的三个内角A,B,C成等差数列,A,B,C的对...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第十二章 复数、算法、推理与证明 第4讲 直接证明与间接证明教案 文 新人教A版-新人教A版高三全册数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部