牛顿运动定律的案例分析-教学参考思路分析本节内容是在学习完牛顿第二定律的基础上,练习使用牛顿运动定律解决动力学问题.主要研究利用牛顿第二定律解决的两类问题:已知物体的受力情况分析物体的运动情况;已知物体的运动情况分析物体的受力情况.重点是总结归纳应用牛顿第二定律解决问题的方法步骤,难点是受力分析和运动过程分析.应用牛顿运动定律解决问题时,首先要进行的是研究对象的确定,而研究对象确定时注意整体法和隔离法的灵活选用;其次是对研究对象进行受力分析或运动过程分析,而无论是受力分析还是运动过程分析,其目的都是写出加速度的表达式或求其值,因为加速度才真正是运动与力间的起桥梁作用的物理量;最后,根据牛顿第二定律和运动学规律列方程,求解验证就可以了.通过本节的学习,可以提高学生利用所学知识解决实际问题的能力,而且能够激发学生用科学的观点探究世界奥妙的热情.知识总结通过本节的学习,我们要总结出牛顿运动定律应用解题的思路和步骤.基本的思路是“两个分析一个桥”.两个分析是受力情况分析和运动情况分析,桥是牛顿第二定律,它使“受力情况分析”和“运动情况分析”连接起来.力和加速度是“桥头堡”.在解决问题时,要根据问题的情景。首先明确是从受力情况确定加速度还是用运动状态确定加速度,然后决定解题过程是从受力求加速度,还是从运动状态求加速度.最后求解物体的运动情况,或是求解物体的受力情况.相关链接牛顿运动定律构架了经典力学的基本框架,展现了力和运动间的关系,使人们的认识发生了巨大的变化.并且,在很大的领域里我们能用来解决实际问题.但是随着科学的发展,人们逐渐认识到牛顿运动定律的使用也是有范围的:它只能在惯性参考系下,解决宏观低速物体的运动.对微观高速粒子的运动规律处理时,却与事实存在着较大的差异.这是为什么呢?我们又如何应对这一问题呢?原来,在以牛顿运动定律为基础的经典力学中,空间间隔(长度)s、时间t和质量m这三个物理量都与物体的运动速度无关.一根尺子静止时这样长,当它运动时还是这样长;一只钟不论处于静止状态还是处于运动状态,其快慢保持不变;一个物体静止时的质量与它运动时的质量一样.这就是经典力学的绝对时空观.到了19世纪末,面对高速运动的微观粒子发生的现象,经典力学遇到了困难,在新事物面前,爱因斯坦打破了传统的绝对时空观,于1905年发表了题为《论运动物体的电动力学》的论文,提出了狭义相对性原理和光速不变原理,创建了狭义相对论.狭义相对论指出:长度、时间和质量都是随运动速度变化的.长度、时间和质量随速度变化的关系可用下列方程来表达:l=l0/(“尺缩效应”)t=t0/(钟慢效应)m=m0/(质一速关系)上列各式里的v是物体运动的速度,c是真空中的光速,l0和l分别为在相对静止和运动系统中沿速度v的方向测得的物体长度;t0和t分别为在相对静止和运动系统中测得的时间;m0和m分别为在相对静止和运动系统中测得的物体质量.但是,当宏观物体的运动速度远小于光速时(v《c),上面的一些结果就变为l≈l0、t≈t0、m≈m0,因而对于宏观低速运动的物体,使用牛顿定律来处理问题,还是足够精确的.继狭义相对论之后,1915年爱因斯坦又建立了广义相对论,指出空间一时间不可能离开物质而独立存在,空间的结构和性质取决于物质的分布,使人类对于时间、空间和引力现象的认识大大深化了.“狭义相对论”和“广义相对论”统称为相对论.