电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 1.2.2.3 空间中的平行关系活页训练 新人教B版必修2VIP免费

高中数学 1.2.2.3 空间中的平行关系活页训练 新人教B版必修2_第1页
1/4
高中数学 1.2.2.3 空间中的平行关系活页训练 新人教B版必修2_第2页
2/4
高中数学 1.2.2.3 空间中的平行关系活页训练 新人教B版必修2_第3页
3/4
1.2.2.3空间中的平行关系1.下列说法正确的是().①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行;②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行;③一个平面内任何直线都与另外一个平面平行,则这两个平面平行;④一个平面内有两条相交直线与另外一个平面平行,则这两个平面平行.A.①③B.②④C.②③④D.③④解析由两平面平行的判定定理知③④正确.答案D2.六棱柱的表面中,互相平行的面最多有几对().A.2B.3C.4D.5解析当底面是正六边形时,共有4对面互相平行.答案C3.在正方体EFGHE1F1G1H1中,下列四对截面中,彼此平行的一对截面是().A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G解析EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG,∴EG∥面E1FG1,同理EH1∥平面E1FG1,且EG∩EH1=E,∴平面EGH1∥平面E1FG1.答案A4.已知a和b是异面直线,且a⊂平面α,b⊂平面β,a∥β,b∥α,则平面α与β的位置关系是________.解析在b上任取一点O,则直线a与点O确定一个平面γ,设γ∩β=l,则l⊂β,∵a∥β,∴a与l无公共点,∴a∥l,∴l∥α.又b∥α,根据面面平行的判定定理可得α∥β.答案平行5.如图是正方体的平面展开图.在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是________.解析以ABCD为下底面还原正方体,如图:则易判定四个命题都是正确的.答案①②③④6.已知底面是平行四边形的四棱锥PABCD,点E在PD上,且PE∶ED=2∶1,在棱PC上是否存在一点F,使BF∥面AEC?证明你的结论,并说出点F的位置.解如图,连接BD交AC于O点,连接OE,过B点作OE的平行线交PD于点G,过点G作GF∥CE,交PC于点F,连接BF.∵BG∥OE,BG⊄平面AEC,OE⊂平面AEC,∴BG∥平面AEC.同理,GF∥平面AEC,又BG∩GF=G.∴平面BGF∥平面AEC,∴BF∥平面AEC.∵BG∥OE,O是BD中点,∴E是GD中点.又∵PE∶ED=2∶1,∴G是PE中点.而GF∥CE,∴F为PC中点.综上,当点F是PC中点时,BF∥平面AEC.7.a是平面α外的一条直线,过a作平面β,使β∥α,这样的β有().A.只能作一个B.至少一个C.不存在D.至多一个解析∵a是平面α外的一条直线,∴a∥α或a与α相交.当a∥α时,β只有一个,当a与α相交时,β不存在.答案D8.设α∥β,A∈α,B∈β,C是AB的中点,当A,B分别在平面α,β内运动时,那么所有的动点C().A.不共面B.当且仅当A,B分别在两条直线上移动时才共面C.当且仅当A,B分别在两条给定的异面直线上移动时才共面D.不论A,B如何移动,都共面解析由面面平行的性质定理,点C应在过AB中点且平行于α(或β)的平面内.故选D.答案D9.已知点S是正三角形ABC所在平面外一点,D,E,F分别是SA,SB,SC的中点,则平面DEF与平面ABC的位置关系是________.解析由D,E,F分别是SA,SB,SC的中点知EF是△SBC的中位线,∴EF∥BC.又∵BC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC.同理DE∥平面ABC.∵EF∩DE=E,∴平面DEF∥平面ABC.答案平行10.如图,在正方体ABCDA1B1C1D1中,E、F、G、H分别为CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面BDD1B1.解析如图,取B1C1的中点P,连接NP、NH、MN、HF、PF,则可证明平面NPFH∥平面BDD1B1,若MN⊂平面NPFH,则MN∥平面BDD1B1.答案M∈FH(答案不唯一,如FH∩GE=M等)11.已知M、N分别是底面为平行四边形的四棱锥P—ABCD棱AB、PC的中点,平面CMN与平面PAD交于PE,求证:(1)MN∥平面PAD;(2)MN∥PE.证明(1)如图,取DC中点Q,连接MQ、NQ.∵NQ是△PDC的中位线,∴NQ∥PD.∵NQ⊄平面PAD,PD⊂平面PAD,∴NQ∥平面PAD.∵M是AB中点,ABCD是平行四边形,∴MQ∥AD,MQ⊄平面PAD,AD⊂平面PAD.从而MQ∥平面PAD.∵MQ∩NQ=Q,∴平面MNQ∥平面PAD.∵MN⊂平面MNQ,∴MN∥平面PAD.(2)∵平面MNQ∥平面PAD,平面PEC∩平面MNQ=MN,平面PEC∩平面PAD=PE.∴MN∥PE.12.(创新拓展)如图①,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP,D为AP的中点,E、F、G分别为PC、PD、CB的中点,将△PCD沿CD折起,得到四棱锥PABCD,如图②.求证:在四棱锥PABCD中,AP∥平面EFG.证明在四棱锥PABCD中,E,F分别为PC,PD的中点,∴EF∥CD.∵AB∥CD,∴EF∥AB.∵EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.同理EG∥平面PAB.又EF∩EG=E,∴平面EFG∥平面PAB.∵AP⊂平面PAB,AP⊄平面EFG,∴AP∥平面EFG.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 1.2.2.3 空间中的平行关系活页训练 新人教B版必修2

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部