《反比例函数》的教学设计一、教学目标(一)知识与技能1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.3.探索现实生活中数量间的反比例关系,能判断一个给定的函数是否为反比例函数.(二)过程与方法1结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.2经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(三)情感与价值观要求1.从现实情境和已有知识经验出发研究两个变量之间的相互关系,进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点。体验数学来源于生活实际,激发学生学习数学的热情和兴趣。2.结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.二、教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.三、教学难点领会反比例函数的意义,理解反比例函数的概念.四、教学方法:利用多媒体教学平台,采用教师引导,学生自主探索和小组合作相结合的教学方式。教具准备投影片两张第一张记作A)第二张记作B)五、教学过程(一)知识链接:函数、一次函数和正比例函数定义、性质等。(二).创设问题情境,引入新课1、我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1600km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1600,则t和v之间的关系是什么呢?肯定不是正比例函数和一次函数的关系,那么它们之间的关系究竟是什么关系呢?这就是本节课我们要揭开的奥秘.2、新课讲解(1)反比例函数定义。投影片A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?①你能用含有t的代数式表示v吗?②当t分别为20,40,60,80,100时,v分别为多大?当t越来越大时,v怎样变化?当t越来越小呢?③变量t是v的函数吗?为什么?师生讨论后给出:一般地,如果两个变量x、y之间的关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数.从中可知x作为分母,所以x不能为零.(2).做一做投影片(B)①.一个矩形的面积为200平方厘米,相邻的两条边长分别为xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?②.某村有耕地380公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?解析:1)由面积等于长乘以宽可得xy=200.则有y=200/x.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.2)根据人均占有耕地面积等于总耕地面积除以总人数得m=380/n.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m=380/n符合反比例函数的形式,所以是反比例函数3.课堂练习随堂练习(P131)4.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y=,得y-1与成反比例的关系式为y-1==k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1==k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.六.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.七.课后作业习题5.1八.板书设计板书设计:反比例函数1、定义:一般地,如果两个变量x,y之间的关系可以表示成:y=k/x(k为常数,K≠0)的形式,那么称y是x的反比例函数2、注意:①常数K≠0;②自变量x不能为零(因为分母为0时,该分式没意义);...