电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

垂直于弦的直径课件VIP免费

垂直于弦的直径课件_第1页
1/15
垂直于弦的直径课件_第2页
2/15
垂直于弦的直径课件_第3页
3/15
24.1.2垂直于弦的直径问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m.问题情境你能求出赵州桥主桥拱的半径吗?把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.实践探究如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么?·OABCDE解答:(1)是轴对称图形.直径CD所在的直线是它的对称轴弧:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,重合,重合.(2)线段:AE=BEABBCADBDACBC与ADBD与因此AE=BEABBCADBD即直径CD平分弦AB,并且平分及ABACB·OABCDE垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.归纳③AM=BM,由①CD是直径②CDAB⊥可推得⑤.④,②CDAB,⊥由①CD是直径③AM=BM④,⑤,可推得DCABEO垂径定理:推论:几何语言表述AC=BCAD=BDAC=BCAD=BD判断下列说法的正误①平分弧的直径必平分弧所对的弦②平分弦的直线必垂直弦③垂直于弦的直径平分这条弦④平分弦的直径垂直于这条弦⑤弦的垂直平分线是圆的直径⑥平分弦所对的一条弧的直径必垂直这条弦⑦在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧解决求赵州桥拱半径的问题AB如图,用表示主桥拱,设所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC,D为垂足,OC与AB相交于点D,根据前面的结论,D是AB的中点,C是的中点,CD就是拱高.BODACRABABAB实践应用解得:R≈27.9(m)BODACR在Rt△OAD中,由勾股定理,得即R2=18.72+(R-7.2)2∴赵州桥的主桥拱半径约为27.9m.OA2=AD2+OD2,7.184.372121ABADAB=37.4,CD=7.2,OD=OC-CD=R-7.2在图中计算如下1.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.·OABE解:OEAB222AOOEAE2222=3+4=5cmAOOEAE答:⊙O的半径为5cm.118422AEAB在RtAOE△中练一练2.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.D·OABCE证明:OEACODABABAC909090OEAEADODA∴四边形ADOE为矩形,又∵AC=AB1122AEACADAB,∴AE=AD∴四边形ADOE为正方形.某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7、2m,过O作OCAB⊥于D,交圆弧于C,CD=2、4m,现有一艘宽3m,船舱顶部为方形并高出水面(AB)2m的货船要经过拱桥,此货船能否顺利通过这座拱桥?CNMAEHFBDO提高练习课后小结1.垂径定理2.垂径定理的推论3.垂径定理的应用1、习题24.17、8;2、练习册上的相关内容.作业布置:

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

垂直于弦的直径课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部