电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

直线与圆的位置关系案例分析VIP免费

直线与圆的位置关系案例分析_第1页
1/8
直线与圆的位置关系案例分析_第2页
2/8
直线与圆的位置关系案例分析_第3页
3/8
直线与圆的位置关系案例分析教学设计1、学习方式:本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与圆的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。2、学生任务分析:充分利用教科书提供的素材和活动。鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合促进学生形成科学地、能动地认识世界的良好品质。3、学生的认识起点分析:学生通过前面的学习,如对称、平移、旋转、说理等方式认识了许多图形的性质,积累了一定的数学活动经验特别是点与圆的位置关系为这节课打下了坚实基础。4、教学目标:(1)经历探索直线和圆的位置关系的过程(2)理解直线与圆的三种位置关系——相交、相切、相离(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。5、教学重点与难点:重点:直线与圆的三种位置关系——相交、相切、相离从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。难点:探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系.6、教学过程:教学步骤教师活动.学生活动.教学方式复习过渡引入新知创设情景探索活动例题教学点与圆有哪几种位置关系?设⊙O的半径为r,点P到圆心的距离为d,如何用d与r之间的数量关系表示点P与⊙O的位置关系?欣赏《海上日出》图片,感受生活中反映直线与圆的位置关系的现象.对学生分类中出现的问题予以纠正,对学生提出解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。按照公共点的个数,进行分类(分三类):直线与圆有两个公共点时叫做直线与圆相交;直线与圆有唯一公共点时叫做直线与圆相切,这条直线叫做圆的切线,这个公共切点;直线与圆没有公共点时叫做直线与圆相离。根据学生讨论的结果,教师板书,如果⊙O的半径为r,圆心O到直线的距离为d,那么:直线l与相交⊙O<==>dd=r直线l与相离⊙O<==>d>r例在△ABC中,∠A=45°,AC=4,以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?由上面的结论可知:判定直线和圆的位置关系,可转化为求圆心与该直线的距离和半径的大小来判定。教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。在教师引导下回忆前面知识,为探究新知识作好准备。议一议学生分小组进行讨论,可从直线与圆交点的个数考虑,1个交点,2个交点,没有交活动一操作、思考第一层次:动手操作,并在操作中感受直线与圆的位置关系的变化。(1)直线与圆的公共点的个数有变化。(2)圆心到直线的距离有变化。第二层次:通过操作活动引导学生归纳直线与圆的三种位置关系活动二探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。第一层次:观察垂足与⊙O的三种位置关系,使学生体会到:这三种位置关系分别同直线与圆的三种位置关系对应。第二层次:探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。关于直线与圆的位置关系,不仅要理解它的判定方法,还应掌握如何运用该判定方法判断直线与圆有怎样的位置关系。鼓励学生自己举出实例,体验数学在生活中的应用。学生在教师引导下回顾反思,归纳整理。由学生归纳总结学生分组讨论,师生互动合作经过对各种情况的分析、归纳、总结,对学生渗透分类讨论的数学思想。引导学生对问题进行分析:要判定直线...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

直线与圆的位置关系案例分析

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部