电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高一数学复合函数课件VIP免费

高一数学复合函数课件_第1页
1/13
高一数学复合函数课件_第2页
2/13
高一数学复合函数课件_第3页
3/13
复合函数复合函数1、复合函数的定义定义:如果y是u的函数,记为y=f(u),u又是x的函数,记为u=g(x),且g(x)的值域与f(u)的定义域的交集不空,则确定了一个y关于x的函y=f[g(x)],这时y叫x的复合函数,其中u叫中间变量,y=f(u)叫外层函数,u=g(x)叫内层函数.即:x→u→y2、复合函数的定义域Dxg)(若复合函数y=f[g(x)],外函数y=f(u),内函数u=g(x):(1)f(x)的定义域就是g(x)的值域.若f(x)的定义域为D,则y=f[g(x)]的定义域是使有意义的x的集合.(2)y=f[g(x)]的定义域为D,则g(x)在D上的取值范围(g(x)的值域)即为f(x)的定义域.3、复合函数的性质引理1:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。引理2:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。引理3:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是减函数。引理4:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是减函数。复合函数的单调性若u=g(x)增函数减函数增函数减函数y=f(u)增函数减函数减函数增函数则y=f[g(x)]增函数增函数减函数减函数规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不相同时,其复合函数是减函数。“同增异减”例题1、求的单调区间.11)(xxf.5422函数的单调区间、求例题xxy例3:求函数的单调性。23221)(xxxf例3:求函数的单调性。23221)(xxxf.3)(122的单调区间练习:求xxxf.)2(log423.0的单调区间、求例题xx.)32(log)(23的单调区间练习:求xxxf复合函数的单调性小结复合函数y=f[g(x)]的单调性可按下列步骤判断:(1)将复合函数分解成两个简单函数:y=f(u)与u=g(x)。其中y=f(u)又称为外层函数,u=g(x)称为内层函数;(2)确定函数的定义域;(3)分别确定分解成的两个函数的单调性;(4)若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数y=f[g(x)]为增函数;(5)若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数y=f[g(x)]为减函数。复合函数的单调性可概括为一句话:“同增异减”。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高一数学复合函数课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部