9.2一元一次不等式第九章不等式与不等式组(第一课时)环县环城初中学习目标:(1)了解一元一次不等式的概念,掌握一元一次不等式的解法.(2)在依据不等式的性质探究一元一次不等式解法过程中,加深对类比和化归思想的体会.学习重点:一元一次不等式的解法.有一次,鲁班的手不慎被一片小草叶子割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.鲁班在这里就运用了“类比”的思想方法,“类比”也是数学学习中常用的一种重要方法.情境导入利用不等式的性质解不等式:一.复习旧知、导入新课观察这些不等式有哪些共同特点?共同特点:这些不等式的两边都是整式,只含一个未知数、并且未知数的(最高)指数是1.(1)2x-2.5≥15;(2)x≤8.75;(3)x<4;(4)5+3x>240.那么我们能不能给这些不等式起一个好听的名字?一元一次不等式定义:2x5<3+x只含有一个未知数,未知数的最高次数是1的不等式叫做一一元一次不等式.元一次不等式.不是一元一次不等式不等号的两边都是整式,✓✓✕✕下列不等式中,哪些是一元一次不等式?(1)3x+2>x–1(2)5x+3<0(3)+3<5x–1(4)x(x–1)<2x1x3.类比一元一次方程和一元一次不等式的解法,你有什么发现?解:去分母得,3(x-2)=2(7-x)去括号得,_________移项得,___________合并同类项得:______系数化为1得:_______3-722-1xx3-722-2xx解:去分母得,———————去括号得,________移项得,__________合并同类项得:_____系数化为1得:______发现:__________________________________.3x-6=14-2x3x+2x=-14+65x=20x=43(x-2)≥2(7-x)3x-6≥14-2x3x+4x≥14+65x≥20x≥4解一元一次不等式与解一元一次方程有类似的步骤化归类比例1解下列不等式,并在数轴上表示解集:221(2)23xx(1)2(1)3x解:(1)去括号,得223x移项,得232x合并同类项,得21x系数化为1,得12x这个不等式的解集在数轴上的表示如下图所示:120解:(2)去分母,得3(2)2(21)xx去括号,得6342xx移项,得3426xx合并同类项,得8x系数化为1,得8x这个不等式的解集在数轴上的表示如图所示;80特别注意,当不等式的两边都乘(或除以)同一个负数时,不等号的方向改变.自学检测解不等式3x1>22-x-5步骤依据去分母去括号移项合并同类项系数化为1不等式的性质2去括号法则不等式的性质1合并同类项法则不等式的性质2或3归纳:解一元一次不等式的步骤,及每一步变形的依据是什么?←注意事项:6.将求得的解集在数轴上表示←用数轴表示解集的口诀:大于往右画,小于往左画,大于小于空心圈,若有等于实心点.←四、本课小结:对自己说,你有什么收获?对同学说,你有什么温馨提示?对老师说,你还有什么困惑?五、作业布置:课本第126页第1、2题.谢谢指导!