5.3简单的轴对称图形(3)——“教学设计”课题5.3《简单的轴对称图形》(三)总课时3第3课时教材分析本节是从折叠入手,使学生进一步认识角轴对称性,让学生通过动手操作、观察、自主探究角平分线的性质。内容包括角平分线的作法、角平分线的性质及初步应用。学情分析学生在小学已经学习了简单的轴对称图形的有关知识,对轴对称图形已有一定的认识,对于观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。三维教学目标1、知识与技能:掌握作已知角的平分线的尺规作图方法;2、过程与方法:利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题;3、情感、态度与价值观:在探究作已知角的平分线的方法和角平分线的性质的过程中,发展几何直觉。重点、难点重点:了解角的轴对称性,掌握角平分线的有关性质。难点:利用尺规作出角的平分线。教学方法及设计意图通过的引导的方法,本着让学生动手操作——大胆猜测——积极探究——小心求证——归纳总结的环节设计。教学过程(教学环节、教师活动、学生活动)设计意图及预期目标第一环节、引入新课:[情境问题一]不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?(对折)再打开纸片,看看折痕与这个角有何关系?学生实验:通过折纸的方法作角的平分线。教师与学生一起动手操作。展示学生作品。得出结论:角是轴对称图形,对称轴是角平分线所在的直线.第二环节、探究新知:[情境问题二]1、对这种可以折叠的角可以用折叠方法的角平分线,对不能折叠的角怎样得到其角平分线?有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点活动目的:体验角平分线的简易作法,并为角平分线的性质定理的引出做铺垫,为下一步设置问题墙。活动效果:通过折纸及作图过程,由学生自己去发现结论.为学生的思考留有时间和空间.1放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平分线,为什么?学生独立运用三角形全等的方法证明AE是∠BAD的平分线。本次活动中,重点关注:(1)学生是否能从简易角平分仪中抽象出两个三角形;(2)学生能否运用三角形全等的条件证明两个三角形全等,从而说明线段AE是∠BAD的平分线。2、问题:(1)从上面的探究中,可以得出作已知角的平分线的方法。已知什么?求作什么?(2)把简易平分角的仪器放在角的两边.且平分角的仪器两边相等,从几何角度怎么画?(3)简易平分角的仪器BC=DC,从几何角度如何画(4)OC与简易平分角的仪器中,AE是同一条射线吗?(5)你能说明OC是∠AOB的平分线吗?(6)归纳角平分线的作法教师提问,学生与老师一起完成探究过程,归纳后教师归纳展示作法。第三环节、猜想再实践,发展几何直觉。[情境问题三]将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.问题1:第一次的折痕和角有什么关系?为什么?活动目的:说明用其他实验的方法可以将一个角平分。培养学生的抽象思维能力和运用三角形全等的知识解决问题的能力,让学生体验成功。活动效果:这个提问设置为角平分线的基本作图的出现做好铺垫,同时证明又验证了学生猜想的正确性,使学生获得成功的体验.将实际问题转化为数学问题,从而顺利解决.活动目的:从实验中抽象出几何模型,明确几何作图的基本思路和方法.培养学生运用直尺和圆规作已知角的平分线的能力.让学生体验成功。活动效果:这个提问设置为角平分线的基本作图的出现做好铺垫,同时证明又验证了学生猜想的正确性,使学生获得成功的体验.将实第三步第二步第一步已知2问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?学生动手剪纸,折叠,教师在多媒体上演示折叠过程.观察思考后,分组讨论、交流:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边的距离,它们的长度相等.再利用几何画板...