电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

一元一次不等求解VIP免费

一元一次不等求解_第1页
1/10
一元一次不等求解_第2页
2/10
一元一次不等求解_第3页
3/10
§9.3一元一次不等式组教材分析:上节课学习了一元一次不等式,知道了一元一次不等式的有关概念及其解法,本节主要学习一元一次不等式组及其解法,这是学好利用一元一次不等式组解决实际问题的关键.教材通过一个实例入手,引出要解决的问题必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式、一元一次不等式的解集、解不等式的概念来类推学习一元一次不等式组、一元一次不等式组的解集、解不等式组这些概念.学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念;求不等式组的解集时,利用数轴很直观,也很快捷,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验.【课时分配】2课时§9.3一元一次不等式组(第一课时)【教学目标】1、理解一元一次不等式组、不等式组的解集等概念.2、会解由两个一元一次不等式组成的一元一次不等式组,并会用数轴确定解.3、通过由一元一次不等式、一元一次不等式的解集、解不等式的概念来类推学习一元一次不等式组、一元一次不等式组的解集、解不等式组这些概念,发展学生的类比推理能力.【教学重点与难点】教学重点:一元一次不等式组的解法教学难点:在数轴上找公共部分,确定不等式组的解集.【教学方法】通过创设学生熟悉的问题情境,激发学生的学习兴趣,通过引导发现法培养学生类比推理能力,尝试指导法培养学生独立思考能力及语言表达能力。.【教学过程】一、创设情境导入新课(设计说明:创设学生熟悉的问题情境,激发学生的学习兴趣)问题:用每分钟可抽30t水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1200t而不足1500t,那么将污水抽完所用的时间范围是什么?师生共析:设用xmin将污水抽完,则x同时满足不等式实际生活中一个量需要同时满足几个不等式的例子还有很多.如何解决这样的问题呢?这节课我们来探究这一类问题的解决方法.(教学说明:用学生身边熟悉的实例引入,一方面引起学生的参与欲,一方面也是知识拓展的需要.设计此情境的意图在于:1、感受同一个x可以有不同的不等式;2、x应该同时符合两个不等式的要求,为引出解集做铺垫.)二、师生互动,探索新知1、类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组。记作:像这样的把两个一元一次不等式合起来,组成一个一元一次不等式组,如也是一元一次不等式组.学生总结,教师补充得出一元一次不等式组的概念:由几个含有相同未知数的一元一次不等式组成的不等式组,叫一元一次不等式组.(2)由得,即x>40且x<50,所以x的取值范围是:405,解不等式②,得x>-2,在数轴上表示不等式①,②的解集为所以这个不等式组的解集是x>5.(2)解不等式①,得x<6,解不等式②,得x≥1,在数轴上表示不等式①,②的解集为所以这个不等式组的解集是1≤x<6.(3)解不等式①,得x<1,解不等式②,得x≥2,在数轴上表示不等式①,②的解集为012它们没有公共部分,故此不等式组无解.(4)解不等式①,得x<-3,解不等式②,得x<,在数轴上表示不等式①,②的解集为所以这个不等式组的解集是x<-3.思考:解一元一次不等式组的步骤是什么?讨论交流后得出,解一元一次不等式组有以下几步:(1)求出不等式组中每个不等式的解集(2)借助数轴找出各解集的公共部分(3)写出不等式组的解集特别注意:没有公共部分称为不等式组无解.(教学说明:既然不等式组的解集是每一个不等式解集的公共部分,因此必须求出...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

一元一次不等求解

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部