【全程复习方略】湖南省2013版高中数学11.1分类加法计数原理与分步乘法计数原理提能训练理新人教A版(45分钟100分)一、选择题(每小题6分,共36分)1.(2012·衡阳模拟)定义整数集合A与B的运算A*B如下:A*B={(x,y)|x∈A,y∈B,且x+y为偶数},若A={-1,0,1},B={1,2,3,4},则集合A*B中的元素个数为()(A)12(B)6(C)4(D)22.(2012·温州模拟)由0,1,2,3,…,9十个数字和一个虚数单位i,可以组成虚数的个数为()(A)100(B)10(C)9(D)903.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()(A)10(B)11(C)12(D)154.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()(A)33(B)34(C)35(D)365.(预测题)只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()(A)6个(B)9个(C)18个(D)36个6.(2012·岳阳模拟)从集合{1,2,3,…,11}中任选两个元素作为椭圆方程=1中的m和n,则能组成落在矩形区域B={(x,y)||x|<11且|y|<9}内的椭圆个数为()(A)43(B)72(C)86(D)90二、填空题(每小题6分,共18分)7.(2012·长沙模拟)一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数为__________.8.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有_______种(用数字作答).9.(易错题)某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这个人把这种特殊要求的号买全,至少要_______元.三、解答题(每小题15分,共30分)10.电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的观众来信,甲箱中有30封,乙箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两箱中各确定一名幸运观众,有多少种不同结果?11.三个比赛项目,6人报名参加.(1)每人参加一项,有多少种不同的方法?1(2)每项1人且每人至多参加一项,有多少种不同的方法?(3)每项1人且每人参加项数不限,有多少种不同的方法?【探究创新】(16分)已知直线ax+by=1中的a、b是取自集合{-3,-2,-1,0,1,2}中的2个元素,并且直线的倾斜角大于60°,那么符合这些条件的直线共有多少条?答案解析1.【解析】选B.x=-1时,y=1,3;x=0时,y=2,4;x=1时,y=1,3.故选B.2.【解析】选D.第一步:先确定实部,可从0,1,2,3,…,9这10个数字中任取一个共10种取法.第二步:确定虚部,可从1,2,3,…,9中任取一个共9种取法.由分步乘法计数原理得共可组成虚数的个数为10×9=90.3.【解析】选B.用0和1进行排列,允许数字重复共有16种排法.与0110有三个位置上的数字相同的排法有四种:1110、0010、0100、0111,与0110有四个位置上的数字相同的有一种,因此答案是:16-4-1=11.4.【解析】选A.从集合A、B、C中各取一个数有1×2×3=6种取法.其中1,1,5三数可确定空间不同点的个数为3个,另5种每种可确定空间不同点的个数都是6.∴可确定空间不同点的个数为3+5×6=33.5.【解析】选C.由题意,知1,2,3中必有某一个数字使用2次.第一步确定谁被使用2次,有3种方法;第二步把这2个相同的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法,故共可组成3×3×2=18个不同的四位数.6.【解析】选B.由题意知:当m=1时,n可等于2,3,…,8共对应7个不同的椭圆;当m=2时,n可等于1,3,…,8共对应7个不同的椭圆.同理可得:当m=3,4,5,6,7,8时各分别对应7个不同的椭圆.当m=9时,n可等于1,2,3,…,8共对应8个不...