最大面积是多少教学目标1.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.2.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.3.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.教学重点1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们利用二次函数解决了最大利润问题,知道了求最大利润就是求函数的最大值,实际上就是用二次函数来解决实际问题.解决这类问题的关键是要读懂题目,明确要解决的是什么,分析问题中各个量之间的关系,把问题表示为数学的形式,在此基础上,利用我们所学过的数学知识,就可以一步步地得到问题的解.本节课我们将继续利用二次函数解决最大面积问题.Ⅱ.新课讲解一、例题讲解如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上.(1)设长方形的一边AB=xm,那么AD边的长度如何表示?(2)设长方形的面积为ym2,当x取何值时,y的值最大?最大值是多少?要求面积y的最大值,即求函数y=AB·AD=x·(40-x)的最大值,就转化为数学问题了.二、做一做某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?Ⅲ.课堂练习投影片:(§2.7D)1.一养鸡专业户计划用116m长的竹篱笆靠墙(如下图)围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?Ⅳ.课时小结本节课我们进一步学习了用二次函数知识解决最大面积问题,增强了应用意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学模型思想和数学的应用价值.Ⅴ.课后作业习题2.8