单项式与单项式相乘12.2整式的乘法(1)b3.b2=_______(2)x2.x=________(3)(y2)5=________(4)(102)4=________(5)(-a)3=________(6)(-3a2)3=________(7)(-2a3b)2=________b5x3y10108-a3-27a64a6b2复习:例1计算:(1)3x2y•(-2xy3);(2)(-5a2b3)•(-4b2c)思考:单项式与单项式相乘有何运算法则?解:(1)3x2y•(-2xy3)=[3•(-2)]•(x2•x)•(y•y3)=-6x3y4(2)(-5a2b3)•(-4b2c)=[(-5)•(-4)]•a2•(b3•b2)•c=20a2b5c(1)系数相乘作为积的系数(2)相同字母的因式,应用同底数幂的运算法则,底数不变,指数相加。(3)只在一个单项式里含有的字母,连同它的指数也作为积的一个因式。概括单项式和单项式相乘主要是利用乘法交换律、结合律计算:(1)3a2•2a3;(2)(-9a2b3)•8ab2;(3)(-3a2)3•(-2a3)2(4)-3xy2z•(x2y)2练习例2卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103米/秒,则卫星运行3×102秒所走的路程约是多少?解:7.9×103×3×102=23.7×105=2.37×106答:卫星运行3×102秒所走的路程约是2.37×106米。练习光速约为3×108米/秒,太阳光射到地球上的时间约为5×102秒,则地球与太阳的距离约是多少米?能力提高计算:(1)(2x2y)•(-3xy3)•(x2y2z)(2)(4×103)•(3×102)•(0.25×104)(3)(-xn-2y3)•(-x2ym)(4)0.5a2b•4a2b-(-10a)a3b2本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上,请问:你能归纳出单项式乘以单项式的运算法则吗?(1)系数相乘作为积的系数(2)相同字母的因式,应用同底数幂的运算法则,底数不变,指数相加。(3)只在一个单项式里含有的字母,连同它的指数也作为积的一个因式。巩固练习(1)下面计算中,正确的是()A、4a3•2a2=8a6B、2x4•3x4=6x8C、3x2•4x2=12x2D、3y3•5y4=15y12(2)5a2b3•(-5ab)2等于()A、-125a4b5B、125a4b5C、125a3b4D、125a4b6(3)填空:(3x2y)3•(-4xy2)=______(4)填空:(-3×103)•(-4×102)=____